MSc in Computational Fluid Dynamics

Atmospheric Dispersion

Objectives: To give an introduction to the theory of atmospheric dispersion
and to describe the basic principles of atmospheric dispersion modelling.

Form of teaching: 12 lectures/tutorials
Form of assessment: 100% assignment

Syllabus:

1. Basic equations for transport of a scalar; source terms; turbulence; eddy
diffusivity

2. Transport processes: pure diffusion from an instantaneous plane source in 3-
dimensions; instantaneous line and point sources; pure advection of tracers;
combined diffusion/advection and Taylor’s mechanism

. Introduction to the atmospheric boundary layer

Continuous point sources; modelling diffusivity

Dispersion in real environments: Pasquill stability classes; dispersion from

a continuous line source

Effect of the ground; high chimneys

Deposition: dry deposition and wet deposition

Types of dispersion model: plume models; box models

Chemistry of atmospheric pollutants

Numerical schemes for pollutant transport equations
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1. Scalar Transport in the Atmosphere

1.1 Basic Principles

Consider an element of air containing a concentration C' of a passive pollutant
(passive means that it doesn’t react and is neutrally buoyant, i.e. it doesn’t
settle).

Volume V

Figure 1. As an element of air is
carried along by the flow it al-
/ ways contains the same air and

_ therefore contains the same mass
Concentration C of pollutant.

If the flow is also incompressible, then the volume of the fluid element
remains constant and so the concentration C remains constant. In mathematical



terms

DC oC oC oC oC oC
Dt TEVO T e T TV, TV, 0 (1)
It will be sufficient for our purposes to take the air to be incompressible so that
Ou Ov Ow
Hence an alternative form of Eq. (1) is
oC ocC 0 0 0

Suppose now that there is a source or sink of the pollutant within the
element of air. This could be because the pollutant is created or destroyed by
chemical reactions or because there is an outflow from, say, a chimney. The
equation for C' would then become

D

D—f = S(z,y,2,t), (4)
where S represents the source term (in kgm~3s~1). Examples could be:
(1) S =—aC (a constant). (5)

This represents decay of C by, for example, chemical decomposition or
radioactive decay.

(ii) S = Spd(r —rg) (Sp constant), (6)

where §(r — rg) is a delta function at r = ry. This represents a continuous
point source (e.g. emission from a chimney).

(iii) S = Spd(r —rp)d(t —to) (So constant). (7)
This represents an instantaneous point source occurring at time t = ¢y at
r =ro (e.g. accidental release of a radioactive substance).

Another type of source/sink term is caused by diffusion. The pollutant may

diffuse in or out of our element. The equation for C is then

DC _ (820 9*C  9°C

_ o2
Dt 92 dy? i 622) =DV'C. (8)

D is the molecular diffusivity. D has dimensions L?T~!. Typical values for

pollutants in the atmosphere are 5-50x107% m?s~!. We are usually concerned
with dispersion on the scale of hundreds of metres to hundreds of kilometres.
Consider L = 100 m. Then the time-scale is

_Ef_ 104
D 50x10-°6

which is infinite for all practical purposes. Hence molecular diffusion is never
directly relevant to atmospheric dispersion.

—2x10%s
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1.2 Turbulence

Atmospheric flows are almost always turbulent. Turbulence occurs when the
Reynolds number is high. It is characterised by eddy motions on a wide range
of scales. When describing the dispersion of pollutants, we are usually interested
in dispersion on scales much larger than many, if not all, of the eddies. In other
words, we are interested in averages over length or time scales large compared
to the turbulence.

In order to analyse dispersion in this way, we assume that it is possible to
divide the flow into a “mean” flow which is slowly varying in time and a rapidly
fluctuating, or “turbulent” part. We could perform this separation by defining
an average as follows:

1

t+T
Average of ¢ = ¢ = T / o(z,y, z,t) dt. 9)
¢

The average period T should be chosen to be long compared to the turbulence
time-scales. Then we put

¢=0¢+4¢. (10)
¢’ represents the turbulent part of ¢. It follows (to a reasonable approximation
at least) that

¢ = 0. (11)

Let us perform this separation for all the variables in the concentration
equation, Eq. (3).

C=C+C
u=1u+u
v=v4+v

Therefore
0

Val / 8 — N\ (Y / 8 — N (Y / 8 — N\ (Y / _
g0 OO+ g I+ (C+ O+ 5 [([0+0) (O O+ g l(@+w)) (C+C)] = 0.

We now average this equation. Consider, for example

(C+C)u+v)=uC+uC" +u'C+uC’
=uC +u'C’

since v’ = C" = 0. Similar results hold for vC and wC, giving

oC 0  _—~ 0, 0, = 0 —— 0 — 0 ——
E—{_a_x(uc)—'_@_y(vc)—{_@(wc)__6_51;(”0)_8_3/(@0)_&(100)' (12)

The right-hand side represents the average effect of turbulent eddies on the
concentration. Molecular diffusion is caused by the random motion of molecules,
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whereas the effect here is caused by the random eddy motions. By analogy with
the molecular scale, we assume that

u'C’ 2—83;(?3—2

oC
v'C’ ——eya—y ’ (13)
w’—C’:—z-:zaa—S ,

€z, €y and €, are analogous to the molecular diffusivity D. They must be
measured experimentally. They differ from D in that

(i) €z, €y and €, need not be equal,

(ii) In general, £, €, and €, are not constant,
(iil) ez,ey,62 > D.
Using Eq. (13),

oC 0 _— 0 _—~ 0, 0 oC 0 oC 0 oC

B 0s MO 5, @0 @0 = 1 (=5 ) (g )+ (=5 )
(14)

This equation is the basis of much of the modelling of atmospheric dispersion.

2. Transport Processes

2.1 Diffusion Without Shear
(i) Instantaneous plane source in 3-dimensions

Suppose that the initial distribution of C' is dependent only on x and ¢ and that
u, v and w are constant. Then Eq. (14) reduces to

I 0D (,00) .
ot Oor Ox oz
We now transform to a frame of reference moving with the flow speed u:
X =z — ut.
Then Eq. (15) becomes
aa—f = 8% (%g—f{) : (16)

Suppose that e, is constant. Then the solution to Eq. (16) is

X2
— : 1
2\/7rexteXp ( 45xt> (17)

4

C(z,t) =



It can be shown that
lim C(z,t) = Q6(X) = Qd(x). (18)
t—0

The solution (17) can be interpreted as an instantaneous release of an amount

Q kgm~2 of pollutant at t = 0 in the plane X = z = 0. Eq. (17) is the Gaussian
“puft” solution because it describes the release of a small “puff” of pollutant.

An important quantity is the mean square distance o2 which the pollutant
has spread from X = 0. This is given by

— 1 / CX?dX = 2¢e,t. (19)
Q /-
Therefore 0 X2
= —— . 2
C(z,t) Oxmexp ( 203) (20)

The pollutant therefore spreads at a rate proportional to v/%.

(i1) Instantaneous line source in 3-dimensions

In this case we assume that C' = C(z,y,t) so that the equation for C is
@—I-u@—kv@—i e@ —|—2 5@
ot Ox Oy Oz \ * 0Oz oy \ Yoy )

As in the previous case we make the transformation X = x — ut and also let
Y =y —vt. Then

oc _ 9 ( oCy_ 0 ( OC (21)
ot ox \"Fax ) "oy \Pvay )

C(XYt):LeXp _1 X—2+Y—2 .
T Art, [EEy A\ ey, gy

It can be shown that o2 = 2¢,t and OZ = 2¢,t. Hence

The solution is

0 1 /X2 Y?
_ LA TN 29
C(X,Y,t) —— exp 2\ o2 + 05 (22)

(iii) Instantaneous point source in 3-dimensions

This is the most general and practical case where C = C(z,y, 2,t). The equation
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for C is

@—F ac-i- 8C+w@_£ € @ —I—Q € @ -1—2 € E

ot Ox Oy 0z Oz \ " 0x oy \ Y oy 0z \ "0z )"
We could put Z = z — wt in line with the cases of plane and line sources but it

is difficult to think of real cases where there is a mean vertical velocity w so we
keep w = 0. The transsformed equation for C' is then

o¢ _ 0 (00N 0 ( 00\ 0 ( 0C (23)
ot  0X \ "0X oy \"Yoy 0z \ 0z )"
The solution is
1 /(X? Y? 2
C(X,Y,zt) = 2Q exp [—— (——i———{—z—>].
8(mt)3/2, fezEyE, 4\ e, & &,
In this case 0923 = 2¢e,t, UZ = 2¢4t and ag = 2¢,t so that
Q 1 /X2 Y? 22
C(X,Y,zt) = —— =+ —=+—=]|- 24
( 21) (27r)3/2<7xay0zeXp 2 \ o2 i o2 * o2 (24)
1.0
— t=0.01
ot | t=0.25 -
I t=0.5
S ———- t=1.0
g | - t=20
s 05
0.2 | /] %‘ Figure 2. Concentration distribu-
Vi AN tions at various times after pol-
0 "‘{f\\:\\;\ lutant release for the diffusion
00 00 =0 o0 st oo of an instantaneous plane source
X=x-ut (Eq (20))

2.2 Advection Without Diffusion in a Shear Flow

Suppose that we have a uni-directional shear flow:

w= (1,0,0) = <%,o,o) (25)

and suppose that we are interested in the flow between z = 0 and z = h.
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0 U Y  Figure 3. Shear flow u = Uz/h.

If we neglect diffusion, then the equation for C' is

oc  oC
Sr+uss =0. (26)
If we again put X = 2z — u(z)t Eq. (26) becomes
oC(X,t)
ot (27)

and so C = C(X), i.e. the concentration is independent of time moving with the
local flow u(z). Counsider as in the previous section the case of an instantaneous
plane source at t =0,¢t=0. Then at t =0

C(X) = Qi6(X).
This must be the solution for all time, because 0C/0t = 0. Therefore

C = Qé(z — u(2)t) = Q6 (:c - %) . (28)

t=0 ty t ts

Figure 4. A line (or plane in 3-
D) of pollutant initially lying on
x = 0 is stretched and rotated
by a shear flow v = Uz/h. At
time ¢ the z extent of the line of
- Ix - pollutant is denoted by [,.

Consider the horizontal extent [, of the pollutant. At time ¢ it is clearly
l, = Ut.

We can see that the pollutant spreads out at a rate proportional to ¢t. This

contrasts with the rate proportional to v/¢ for diffusion, so it would appear that
advection is always more important than diffusion, except perhaps for a short
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time after release. However, we shall see in the next section that this is not the
case.

2.3 Advection and Diffusion in a Shear Flow

When advection and diffusion occur simultaneously, the stretching of regions of
high concentration, as occurs for pure advection, is less effective because trans-
verse diffusion of the high concentration region is enhanced by the stretching
caused by the shear. This is shown schematically in Fig. 5.

(a) (b) ()

Advection
————

Figure 5. An initial slab (a) of pollutant is rotated and stretched by shear (b), leading to
enhanced diffusion in the transverse direction (c). The spreading of the line of maximum
concentration is clearly reduced by the diffusion.

The processes described here are known as Taylor’s mechanism.
3. The Atmospheric Boundary Layer
3.1 Boundary Layer Equations

Let us write the Navier-Stokes equations as

Du 1

— =——-Vp—gk+ V.7

where T is the stress tensor. In laminar flows, 7 may be expressed in terms of
the viscosity. In turbulent flows, molecular viscosity is not usually important
because the Reynolds number is high. Instead, transport by turbulent eddies is
more effective. Neglecting viscosity, we have for an incompressible flow

%-F%(uz)—i—%(uv)—l—%(uw):—%g—i, (29)
%+%(uv)+%(vz)+%(vw):—%g—§. (30)
As for the case of turbulent transport of a tracer, we put
u:ﬂ+d,
v="1+1, (31)
w=w+w.



Substituting Eq. (31) into (29)—(30) and averaging

@ i—2 2— 2—__1@_i—/2_2 11_2//
8t+8x(u)+8y(uv)+az(uw)_ p Ox Bx(u) 8y(uv) 8z(uw)’
v 0 v Qs L mmy = 10 9 oy 9 oy _ 9
at+ax(uv)+8y(v)—|—az(vw)— 9y ax(uv) 8y(v) az(vw).

Close to the surface, variations in the vertical dominate horizontal variations so
that we can neglect £ and y derivatives. Furthermore, the mean flow is almost
horizontal so that w = 0. Therefore

Ju 10p 0 (o
ot pOx 0z
ov 10p O (v
ot pOy 0z
It turns out that on the scale of the whole boundary layer, we cannot neglect the
effect of the rotation of the Earth. This effect is included by working in a frame
of reference fixed relative to the surface of the Earth in the region of interest
(this is of course a rotating, or non-inertial frame of reference). The frame of

reference is rotating with angular speed Q2 = 27/(1 day). In the rotating frame
of reference the equations of motion become

ou 10p O

E—2Q’USIH¢:—;6—$—$(U’LU), (32)
P sy L0
at—|—29usmq§— >0y az(fuw). (33)

The extra terms which have been introduced are called the Coriolis force. ¢ is
the latitude.
As for the case of scalar transport, we assume that

u'w' = —K?,
p (34)
v'w' = —K&.

K is called the eddy viscosity. We often write

(35)

0z’ 0z

T=—p/w vw') = pK <

where T is the turbulent stress.



3.2 Constant Stress Layer — The Surface Layer

There is a thin region close to the surface where the stress 7 does not vary much
from its surface value and so it can be assumed to be constant. This is called
the surface layer. In the surface layer

Te = —ij—u,
d (36)
__ W
Ty =—pK .
Let the wind speed U be given by
U2 — 32 + 52

and let

T2 = Tx2 + 7'y2

where 7 is the magnitude of the surface stress. Because the direction of the
stress does not vary with height in the surface layer it follows from Eq. (36) that

dU
= —pK—. 37
T=—pK— (37)
We usually write the constant stress 7 as
T = —pu (38)

where u, is a quantity called the friction velocity. We can use arguments from
dimensional analysis to evaluate the eddy viscosity K. It turns out that the
only scales available to us are u, and the height z itself. In terms of these we
have

K x uyz.

Physically this indicates that at greater heights, larger turbulent eddies are
acting to transport momentum. We put
K = ku,z (39)

where k is a constant called von Karman’s constant. It is usually taken as
k = 0.4. From Eq. (37), (38) and (39)
dv _
dz  kz’

U = % In (zio) (41)

where zg is a constant. Note that as z decreases towards zero, U goes to zero
at z = zg. zg is called the roughness length and it is a measure of the size of the
so-called roughness elements making up the surface. These roughness elements

(40)

Solving this for u we get

10



could be grains of sand, blades of grass, bushes, trees, etc.

Table 1. Roughness length for various surfaces

Ground Cover zg (m)
Smooth water or ice 104
Lawn 0.01
Long grass 0.05
Suburban housing 0.6
Forest, city centre 1-5

Eq. (41) usually applies up to a few tens of metres from the ground.

3.3 Effect of Stability

Under some circumstances (particularly at night when there is no cloud) the
surface cools by radiation into space and the layer of air close to the surface
becomes cold and dense.

y4

Figure 5. Temperature and den-
sity profiles close to the surface on
a clear night. The air close to the
surface is stably stratified.

This stable stratification inhibits vertical eddy motion. This can be thought of
as reducing the size of the turbulent eddies so that K = ku,z no longer applies.
Another way to think about the problem is that there is another length scale,
in addition to z, introduced into the problem. This is

B pCpudT

L =
kgH

(42)

where C), is the specific heat capacity at constant pressure, T is an average
temperature (absolute) and H is the surface heat flux. For surface cooling, H
is negative and so L is positive. L is called the Monin-Obukhov length. It is
found experimentally that for stable stratification a reasonable approximation
is

kuyz

K =
1—1—04%
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so that

‘3—(2] _ % (1 + a%) (43)

where « is a constant. Typically, @ ~ 5. The solution of Eq. (43) is
Uy z z
= — |In| — —1. 44
0= o (5) o] @
3.4 The Ekman Layer

On a scale deeper than the surface layer, we can, to a crude approximation, take

K = constant. For neutral stratification, K ~ 10 m2s~!. If the flow is steady,
Eq. (32)—(34) become

. 1 0p 0’u
—2Qusin ¢ = —;% + Kﬁ’
_ . 10p 0*v
—|—29us1n¢ = _;8_3/ + K_azQ

In the boundary layer we can assume that 0p/0z and 0p/0y are independent of
height and are given by
op

9 2Qpvg sin ¢,
g—zy? = —2Qpug, sin ¢

where u, and v, are called the geostrophic wind components. For our purposes,
we can take them to be the wind above the boundary layer. Let f = 2Qsin ¢
— the Coriolis parameter. Then

0%y _
Ko =—f(@=1v),
2 . (45)
(% _
These are the Ekman equations. The solutions are
U = ug [1 —e~?/0 cos(g)] —'Uge_z/‘s sin(%), )

v =, [1 _e—2/0 cos(%)] —|—uge_z/‘5 sin(%)

K
)= —.
\'7

12
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0 is a measure of the thickness of the atmospheric boundary layer. In mid-
latitudes, f ~ 10~% s~ ! and we find that § ~ 500 m.

The Ekman solution (46) shows that the wind direction varies within the
boundary layer and that the wind vectors form a spiral with increasing height

(see Fig. 7).

-

200 300

Figure 7. Wind vectors in the Ek-
man boundary layer. The heights
; of the wind vectors are shown in
Ug metres.

4. Continuous Point Sources of Pollutant

Consider a point source at x = y = z = 0 emitting pollutant continuously in
time. The pollutant will be carried down stream by the wind and will disperse
by turbulent diffusion. Suppose that the wind has speed u in the z direction.
The situation is sketched in Fig. 8.

.

Se —»Uu

\ Figure 8. A plan view of a plume
— of pollutant from a continuous
X T point source S.

Consider a slice of air 1 m thick moving in the z-direction, extending to
infinity in the y and 2 directions and moving with the mean wind u. The time
taken for the slice to pass a fixed point is 1 / u seconds. If the source emits g kgs™!
of pollutant, then the amount in the slice is ) = q/ u. The pollutant diffuses in
the z, y and z directions. But since the source is continuous, about the same
amount of pollutant diffuses into the sheet in the - dlrectlon as diffuses out
through the opposite side. Diffusion in the z-direction therefore has negligible
effect. The diffusion problem reduces to that of 2-dimensional diffusion in the v,
z plane but in a frame of reference moving in the z-direction with speed u. The
2-dimensional diffusion solution Eq. (22) therefore applies, but with Q = g/u.
In other words

i

2 2
q Y <
C =5 ——exp(—55—55 |- 47
v, z,2) 27r0y0zueXp ( 207 202) (47)

This is the Gaussian plume equation which is the basis of much dispersion mod-
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elling. Note that following the flow, ¢ = z/u so that we expect o, and o, to

behave like
oy = \/263/%, o, = 252,2 (48)

In fact this is not the case because ¢, and ¢, are not constant.

5. Dispersion in Real Environments

The Gaussian plume equation, Eq. (47) is derived from Eq. (22) and this in turn
is only a true solution of the concentration equation, Eq. (21) if the eddy diffu-
sivities are constant. This is generally not true. For example, in the neutrally
stratified surface layer, the eddy viscosity K is given by u.kz and we can expect
€, to behave similarly. In order to analyse real environments we have at least 3
possibilities:

(i) Estimate (for example using surface layer theory) or measure (usually in-

directly by measuring wind fluctuations v’2 and w'2) ¢, €, and then solve
Eq. (21) numerically.

(ii) Assume that the solution (47) is still a reasonable approximation but that
the variation of o, and o, with z is different to Eq. (48). Instead, we replace

(48) by empirical relationships between o, 0, and z.

(iii) For some special cases, take e, to vary with z and solve the concentration
equation analytically.

We now consider examples of (ii) and (iii).

5.1 Pasquill-Gifford Stability Classes

It is observed that in neutral stratification, Eq. (48) does not hold. Instead,
measurements suggest that o, and o, are proportional to z¢ for « in the range
0.75 to 1. This observation changes when the atmospheric stability changes. For
example, when the air is very stable, vertical mixing is inhibited and o, grows
only slowly with . On the other hand, when there is strong solar heating of
the surface, there may be strong convective activity with large vertical motions;
then o, increases rapidly with x.

Based on measurements of atmospheric turbulence over flat plains, Pasquill
and Gifford produced empirical results for the variation of o, and o, with z for
six stability classes. These are shown in Table 2.
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Table 2. Pasquill-Gifford stability classes
Class Definition

A Extremely unstable
Moderately unstable
Slightly unstable

Neutral
Slightly stable

Moderately stable

HEO QW

Guidelines are given for estimating the stability class from the wind speed, cloud
cover and time of day. These are given in Table 3.

Table 3. Guidelines for determining Pasquill-Gifford stability classes

Day with insolation Night

Surface Overcast or

wind speed > 4/8 low <3/8
(ms_l) Strong Moderate Slight low cloud cloud
2 A A-B B - -
2-3 A-B B C E F
3-5 B B-C C D E
5-6 C C-D D D D

6 C D D D D

Figs. 9 and 10 show the variation of o, and o, with z for the six stability classes.
These variations may be approximated by

O_y — a$0.894 (49)

and

o, =cx® + f (50)
where the constants a, ¢, d and f depend on the stability class as shown in Table
4.
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Table 4. Constants in empirical relationships for 0y and 0,

r <1km x> 1km
Stability
class a c d f c d f
A 213 440.8 1.941 9.27 459.7 2.094 -9.6
B 156 106.6 1.149 3.3 108.2 1.098 2.0
C 104 61 0.911 0 61 0.911 0
D 68 33.2 0.725 -1.7 44.5 0.516 -13.0
E 50.5 22.8 0.678 -1.3 55.4 0.305 -34.0
F 34 14.35 0.740 0.35 62.6 0.180 -48.6

With these values of o, and o0, the concentration

from Eq. (47). An example is shown in Fig. 11.

10000

1000

o, (m)

10

1000

0-z (n1)

10

A
E
100 /

B

1 10
Downwind distance (km)

1 10
Downwind distance (km)

can be determined directly

Figure 9. Variation of o, with
downwind distance x for the six
Pasquill-Gifford stability classes.

Figure 10. Variation of o, with
downwind distance x for the six
Pasquill-Gifford stability classes.
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1000

Figure 11. The solution to the

Gaussian plume equation (47)

with o, and o, given by the Pasquill-Jj

Gifforcf recommendations for sta-
bility class C. Contours of concen-

1000 S e tration are shown at z = 0 for a

x(m) wind speed of 10 ms™!.

y(m)

5.2 Dispersion from a Continuous Line Source

A major application here is to the dispersion of emissions from motor vehicles
travelling along a road on a cross-wind. If the wind is in the z-direction, per-
pendicular to the road, and y is along the road, then we do not expect the
concentration of pollutant to depend on y. Just as described in §4, we can ne-
glect diffusion in the windward direction, so that the concentration equation for
a steady concentration distribution is

oc 0 oC

For neutral stability, it is reasonable to assume that e, is equal to the eddy
viscosity in the neutral surface layer, so that

£, = kuyz. (52)

ocC 0 oC

We need also to describe the height variation of the wind, u. It would seem to be
consistent with the assumptions on ¢, to take a logarithmic velocity profile but
unfortunately we cannot then solve Eq. (53) analytically. Instead, a commonly

made assumption is that
u [z p (54)
Ui B Z1

where u is the wind speed at a fixed height z;. This can only be approrimately
equal to the logarithmic profile (41) over a relatively small height range. To get
a reasonable correspondence, note that from Eq. (54)

Therefore

ldu p

udz =z
and therefore

du  pu

dz 2z’

If we now substitute from Eq. (40) and (41) into the left and right sides of the
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above equation, we get

u _p, (2
kz =z 20
1

Of course p should be a constant and so in Eq. (55) we take an average value of
z over the range of interest. The precise value of p should really depend not only
on the height range of interest but also on the atmospheric stability. Generally,
values in the range 0.1-0.4 are used, but for high stability they may be even
larger. Typical values are given in Table 5.

and hence
(55)

Table 5. Exponent in Power Law Wind Profile

Surface/stability D
Neutral /smooth 0.14
Neutral/rough 0.3
Moderately unstable 0.1
Extremely unstable 0
Stable 0.2-1

Using Eq. (54), Eq. (53) becomes

2z \? oC 0 oC
and the solution is

4 p+1
C(z,z) = a exp < i B ) . (57)

(p+ Duskz (p+ 1)%u.kzx
Note that the concentration at the ground decreases with z like 1/z, unlike
the one-dimensional diffusion solution with constant diffusivity which suggests

decay like 1/4/z. Note also that the decay rate is larger for smaller p, i.e. for
unstable air flow. Eq. (57) has been shown to agree quite well with observations.

6. Gaussian Plumes from High Chimneys

The Gaussian plume equation (47) assumed that the source was at z =y = z =
0. We can easily change this so that the source is from a chimney of height h
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by replacing Eq. (47) by

2 2
q Yyt (2—-h)
Cla,y,2) = 27rayazueXp< 205 202 ) ' (58)

z

However, this equation tells us that diffusion takes place not only for z > 0
(above the ground) but also for z < 0 (below the ground). The simplest as-
sumption available to correct this is to assume that any pollutant which reaches
the ground is reflected back. Thus the pollutant which, according to Eq. (58)
should be below the ground actually appears above the ground. This is exactly
equivalent to allowing Eq. (58) to apply unmodified but then introducing an-
other source at z = —h (i.e. the image of the true source in the ground). We
then replace Eq. (58) by

2 2 2 2
. q ¥y (2—h) ¥y (2th)
Clz,y,2) = 2oy 0,u lexp ( 205 202 ) +exp ( 205 202

(59)
and use Eq. (59) for z > 0 only. The concentration at ground level is
2 2
q y h
C(z,y) = Y. 60
(,9) WayazueXp ( 207 203) (60)

Fig. 12 shows the concentration at ground level downwind of two chimneys (one
25 m high and the other 50 m high) emitting the same amount of pollutant. It
is clear that for the higher chimney the maximum concentration is both lower
and further down wind.

5.0

4.0
25 m chimney

Concentration
w
o
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Figure 12. The ground level con-

, N centration of pollutant down wind
PSS of two chimneys emitting equal

00 - / SN amounts of pollutant. Pasquill sta-

' " Downwind distance (m) ' bility class C is assumed.

1.0 “TTNS

If we consider the Pasquill-Gifford stability class C (slightly unstable) then o, ~
1002%° and o, ~ 602%°. The maximum ground level concentration according
to Eq. (60) can then be shown to be at o, = h/y/2 and its value is

q _ 0.15¢

Cmax % 0.83 meuh? A2

(61)
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Note that the maximum concentration decreases as the square of the chimney
height — so tall chimneys are a good idea.

7. Deposition

For some pollutants, what matters is not only the concentration in the air but
also the amount which settles on the ground. For example, dust particles from
a quarry may cause a nuisance down wind. Sulphuric acid which is created from
power station emissions causes acidification of soil and can be harmful to plants
and animals (e.g. destruction of forests and fish in lakes by acid rain). Methods
for calculating the rate of deposition are needed. We will not go into details
here. However, some important factors are:

(1) Settling rate of particles. This is strongly dependent on the particle size
and hence a knowledge of particle size distributions is important.

(i1) Dry deposition by diffusion. The flux of a pollutant with concentration C
kgm~3 through the ground is

oC
. kgm~?s71.
5, kem™’s

Note that in the image model for plumes reflecting from the ground, 0C/0z =§}
0 at the ground (by symmetry) and hence the deposition rate is zero.

(iii) Wet deposition. Important processes are washout (collection of pollutant
by rain drops as they fall) and rainout (collection of pollutants by cloud
droplets which subsequently form rain drops). Knowledge of precipitation
rates is clearly essential.

F— _82;

8. Types of Atmospheric Dispersion Models
8.1 Gaussian Plume Models

These use an equation such as (24), (47) or (57) to predict the concentration of
pollutant emitted by a short-lived or continuous point or line source. They are
particularly useful for studying the effects of a single source. They are less well
adapted to problems involving many sources (e.g. a whole city) or problems
where chemical reactions of pollutants are important.

8.2 Single Box Models

These models define a box enclosing the region of interest and for that box
consider

Accumulation \ _ [ All flow \ [ All flow n Creation | [ Destruction
rate ~ | rates in rates out rate rate :
This is particularly suitable for a model of a polluted city. It is well-adapted to

the inclusion of chemical reactions and many different pollutants but it is of no
use for predicting local concentrations of pollutants.

8.3 Multi-Box Models
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These are similar to single box models except that the fluxes of pollutant into
each box are derived from the fluxes out of the adjacent box (see Fig. 13).

Figure 13. Two boxes of a multi-
box pollutant transport model
showing the matching of fluxes
across inter-box boundaries. The
flux F; of pollutant out of Box 1
is equal to the flux Fs of pollutant
into Box 2.

8.4 Numerical Solution of the Concentration Equation

This is the most general approach but is usually the most expensive (see §10 for
more details).

9. Chemical Reaction of Atmospheric Pollutants

As noted in §1, pollutants may react with each other or with the air to form
new chemicals. Some of the more important reactions for pollution studies are
now described.

9.1 Nitrogen Oxides and Ozone

The oxides of nitrogen NO (nitric oxide) and NOg are produced during combus-
tion. There are two sources:
(i) From nitrogen in the air in contact with flames at a few thousand K.
(ii) From nitrogen present within the fuel.
The dominant reaction producing nitrogen oxides (NOy) is

Ny + 02 — 2NO.

NO is a colourless and odourless gas. It reacts with oxygen in the air over a few
hours to produce nitrogen dioxide:

2NO 4+ O3 — 2NO.,.

NO, is a brown gas which is a respiratory irritant. Some of the NOs reacts with
water vapour to form nitric acid:

3NOs + H,O — 2HNO3 + NO.

Another important reaction of NOs is a photochemical reaction producing ozone,
03:
NOy + hv — O + NO,
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O4+03+M —03+M

where hv represents a photon of sunlight and M is any air molecule (usually No
or O3). Ozone is the main contributor to photochemical smog and is a strong
respiratory irritant.

9.2 Oxides of Sulphur

All fuels (e.g. oil, coal, gas, wood) contain sulphur. When these are burnt the
sulphur is mostly released as sulphur dioxide (SO2):

S+ 0Oy — SOs.
A sequence of reactions in the atmosphere then produces sulphuric acid:
SO + OH 4+ M —>H803—|—M,

HSO3 + O3 — SO3 + HO»,
SO3 + HoO — HoSO04.

The sulphuric acid condenses onto existing particles or condenses to form new
particles. These are often captured by rain drops and fall to the ground as acid
rain.

SO2 can be removed from emissions by reaction with limestone (CaCOs3)
to form gypsum (CaSQy):

2CaCO03 + 25042 + 02 — 2CaS0O4 + 2CO0,.

9.3 Oxides of Carbon

Carbon dioxide (COg) is a naturally occurring gas in the atmosphere. It is ab-
sorbed by plants during photosynthesis and is therefore an essential component
of the biosphere. The amount of carbon dioxide is increasing in the atmosphere
because
(i) It is produced during the burning of all fuels
(ii) As tropical forests are cut down for timber, there are fewer trees to absorb
the COQ

The proportion of CO5 in the atmosphere has increased by about 25% since the
Industrial Revolution.

The air is quite transparent in incoming solar radiation. This heats the
surface of the Earth which in turn emits radiation at much longer wavelengths.
This long-wave radiation is strongly absorbed by CO5. Thus, increasing the pro-
portion of CO4 has the potential to increase the temperature of the atmosphere
and oceans (global warming). It is thought that doubling the amount of CO5
over the next century would result in a temperature rise of 0.5-5°C. There are
great uncertainties, particularly connected with the response of the biosphere
and absorption of CO2 by the oceans. The main consequences of global warming
would be

(i) changes in climate patterns (with desertification in places)
(ii) rising sea levels due to melting of land ice and thermal expansion of the
sea.
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Burning of fossil fuels also produces carbon monoxide (CO). This is very
poisonous. It is produced in equilibrium with COs:

2C05 — 2C0O + Os.

At high temperatures the equilibrium moves more to the right in the above
equation.

9.4 CFCs

CFCs (chloro-fluoro-carbons) are compounds containing chlorine, fluorine and
carbon. They are very inert, non-toxic, non-inflammable, invisible and odour-
less. They have been used as refrigerants and as propellants in aerosol cans.
The problem with CFCs is that when they reach the stratosphere (10-50 km)
they can release chlorine which reacts to destroy naturally occurring ozone. For
example

CFCl3 + hv — CFCl;y + Cl,
Cl+ O3 — C10 + Og,
ClO + O — Cl + Oaq.
Stratospheric ozone is responsible for absorbing much of the ultra-violet part
of the incident solar radiation. Loss of ozone results in increased UV radiation
reaching the surface. This is harmful to humans and animals and possibly

to plants. CFCs are rapidly being replaced by other chemicals as a result of
international agreements. However, their residence time in the atmosphere is

tens to hundreds of years, so the effects of 20" century CFC production will
continue for a considerable time.

10. Numerical Schemes

We will consider some finite difference numerical schemes for the solution of the
advection-diffusion equation with source term S(C,t):

oc 0 0 0 0 oC 0 oC 0 oC

(62)
10.1 Source Terms
The equation
% = S(C,t) (63)
can be approximated by
O™t = O™ + AtS(C™,t7) (64)

where C" denotes C evaluated at time t" = nAt¢. Eq. (64) is not usually
practical because stability is only achieved with severe restrictions on the time
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step. Eq. (64) is an ezplicit scheme. The corresponding implicit scheme is
Cntl = O™ 4 AtS(C™ T . (65)

This is unconditionally stable but if S is a nonlinear function, Eq. (65) requires
solution of a system of nonlinear equations. Semi-implicit schemes are possible,

such as
O™l = C™ + A[ES(C™ ") + (1 - €)S(C™, 7). (66)
If S is a linear function, then the scheme (66) with & = 0.5 is unconditionally

stable and is furthermore second order accurate in time, unlike (64) and (65)
which are only first order accurate.

10.2 Advection Terms

Consider the simplified advection equation

oC oC
where u is assumed to be constant. The simplest scheme is
cptt —cr cr,—Cr
7 i —u 1+1 1—1 (68)
At 2Ax

where CT' denotes C evaluated at x; and where z;1; — z; = Az. Eq. (68) is
unconditionally unstable and therefore useless. The Lax scheme is a modification

of (68) in which C[" is replaced by (CP'; + C,):

C;'n+1 - %(Cﬁl—l + C’?—l) R 7’:n—|-1 - ';n—l (69)
At 2Azx '
This scheme is stable if the Courant-Friedrichs-Lewy (CFL) condition
lu| At
<1 70
AL S (70)

is satisfied. However, it is only first order accurate in time. Another problem
is that it is possible for C' to become negative. This problem is overcome in
so-called upwind schemes:

cor —Ccn
CTL+1 . Cn — UzA—ml_l fOI' u > 0
? 71 o 7]_
Ai n, - Cn )
— UA— for u < 0.
Hi

This is stable if the CFL condition is satisfied but is only first order accurate
in space. Use of the upwind scheme is equivalent to the introduction of a large
artificial diffusion. A scheme which is explicit, second order accurate in space
and time and is stable if the CFL condition is satisfied is the two-step Lax-
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Wendroff scheme:

ntl _ pm  UAL [ ni12 n+1/2
Ci Cz - Az (Ci+1/2 _Ci—1/2>
uAt

n+1/2 1 n n
Ci+1/2 ) ( i1 T + ¢ ) N ( i+1 - C; )
This scheme does however still allow negative values of C.

10.3 Diffusion Terms

Consider the simple, one-dimensional diffusion equation

oC 0 oC
— = —|e— ). (73)
ot oz oz
For simplicity we will assume that the diffusivity ¢ is constant. An explicit
scheme which is first order accurate in time and second order accurate in space

is 1
n n

A (Aap G RO OR T
This is stable if DAt
€
(A:c)2 < 1. (75)

This usually requires a vast number of time steps for the effects of diffusion to
become noticeable. The fully implicit scheme

C'ZH_I _ Czn _ [
At (M)

Ccrit -0t 4 ol (76)

is unconditionally stable but it is necessary to solve a tridiagonal system of
equations at each time step. If the average of Eq. (74) and (76) is taken we get
the Crank-Nicholson scheme which is unconditionally stable and second order
accurate in space and time.

If € is not constant, the above schemes can easily be generalised. For ex-
ample, we can write

0 oC 1
9z (5 8:13) = (Ax)Q [€i+1/2(0i+1 - Ci) - Ei—l/z(Cz' - Ci—l)}
= D,. (77)

10.4 Operator Splitting

For multi-dimensional problems or problems in which there is advection and
diffusion, many of the above methods can still be used if an operator splitting
approach is used. For example, consider the one-dimensional advection-diffusion
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equation:

oC oC 0 oC
E+U%:a—x<€8—w). (78)
Now consider
801 . oC )
- Yo
> (79)

00, _ o (.0C
ot  Ox 88:1: ’
C:C1+02. y,

By adding the first two equations in (79) we get Eq. (78) but we can step
forward these two equations separately, thus using the techniques available for
the solution of simpler equations.

As another example, consider the three-dimensional diffusion equation:

8_0_288_C+268_C+288_C (80)
ot 0z \ "oz oy \"Y oy 0z \ %0z )"

Using the notation in Eq. (77), we can solve

i — Dn+1/3+Dn + D"
1 )
TAL . y T
i - i — DZ+1/3+D2+2/3—|—D?+1/3, \ (81)
TAL
7 lAzt — DZ+2/3+DZ+2/3+D?+1'
3 y

Adding these equations gives a consistent representation of Eq. (80) which is

second order accurate in space and time. This is an alternating-direction implicit
(ADI) method.
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