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The behaviour of strontium (Sr2+) duringmicrobial reduction in nitrate impacted sedimentswas investigated in
sediment microcosm experiments relevant to nuclear sites. Although Sr2+ is not expected to be influenced di-
rectly by redox state, bioreduction of nitrate caused reduced Sr2+ solubility due to an increase in pH during
bioreduction and denitrification. Sr2+ removal was greatest in systems with the highest initial nitrate load-
ing and consequently more alkaline conditions at the end of denitrification. After denitrification, a limited
re-release of Sr2+ back into solution occurred coincident with the onset of metal (Mn(IV) and Fe(III)) re-
duction which caused minor pH changes in all microcosms with the exception of the bicarbonate buffered
systemwith initial nitrate of 100 mM and final pH>9. In this system ~95% of Sr2+ remained associatedwith
the sediment throughout the progression of bioreduction. Analysis of this pH 9 system using X-ray absorp-
tion spectroscopy (XAS) and electron microscopy coupled to thermodynamic modelling showed that Sr2+

became partially incorporated within carbonate phases which were formed at higher pH. This is in contrast
to all other systems where final pH was b9, here XAS analysis showed that outer sphere Sr2+ sorption pre-
dominated. These results provide novel insight into the likely environmental fate of the significant radioac-
tive contaminant, 90Sr, during changes in sediment biogeochemistry induced by bioreduction in nitrate
impacted nuclear contaminated environments.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Strontium-90, a high yield fission product resulting from nuclear
fuel cycle operations, is a significant radioactive contaminant at nu-
clear facilities worldwide (Jackson and Inch, 1989; Riley and
Zachara, 1992; Mason et al., 2000; Dewiere et al., 2004; McKinley et
al., 2007; Priest et al., 2008; McKenzie and Armstrong-Pope, 2010).
The behaviour of 90Sr is of particular environmental concern in con-
taminated land due to both its ~29 year half-life (meaning that it
will persist over several hundred years), and it is relative mobility
in the shallow sub-surface at some nuclear facilities (McKinley et
al., 2007; McKenzie and Armstrong-Pope, 2010). The remediation of
90Sr and other radionuclides (e.g. U and Tc) from groundwaters at
these sites is a key challenge for nuclear decommissioning. It is there-
fore important to explore remediation strategies which show promise
of removing or immobilising a wide variety of problematic radionu-
clides with differing biogeochemical behaviour (e.g. 90Sr, U and Tc)
using a single methodology. Furthermore, the geochemical conditions
(K. Morris).
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at many nuclear facilities are mildly acidic to neutral, have high nitrate
and also have significant naturally occurring iron(III) oxyhydroxide
phases thatmust be taken into accountwhen investigating remediation
scenarios (Fredrickson et al., 2004; Istok et al., 2004; Begg et al., 2007;
Edwards et al., 2007; McBeth et al., 2007; Law et al., 2010; McKenzie
and Armstrong-Pope, 2010).

Strontium-90 exists in the natural environment solely as the Sr2+

ion, has very similar geochemical behaviour to Ca2+ and is therefore
not directly affected by changes in redox conditions. Strontium specia-
tion is controlled primarily by adsorption tomineral surfaces and incor-
poration or at high concentrations precipitation into Ca2+ bearing
mineral phases (e.g. CaCO3). Strontium mobility in the subsurface is
influenced by the adsorption capacity of the minerals within the sedi-
ment aswell as the pH and ionic strength of the groundwaters, temper-
ature, organic matter concentration and the exchangeable Ca2+/Mg2+

content (Cowan et al., 1991; Chen and Hayes, 1999; Solecki, 2005; Hull
and Schafer, 2008; Chiang et al., 2010). The Sr2+ ion typically forms
outer sphere adsorption complexes which are electrostatically bound
to negatively chargedmineral surfaces. As expected, increasing adsorp-
tion is observed as pH increases above the point of zero charge (PZC) of
the relevant mineral phases (Cowan et al., 1991; Ferris et al., 2000;
Sahai et al., 2000; Hofmann et al., 2005; Bascetin and Atun, 2006;
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Table 1
Initial geochemical composition of microcosm systems.

System Initial
pH

Nitrate
(mM)

Acetate
(mM)

Ionic
strength

Bicarbonate unamended
0.3 mM nitrate

5.5 0.3 10 0.024

Bicarbonate unamended
10 mM nitrate

5.5 10 10 0.034

Bicarbonate unamended
25 mM nitrate

5.5 25 20 0.059

Bicarbonate amended
0.3 mM nitrate

7 0.3 10 0.027

Bicarbonate amended
10 mM nitrate

7 10 10 0.037

Bicarbonate amended
25 mM nitrate

7 25 20 0.062

Bicarbonate amended
100 mM nitrate

7 100 70 0.190
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Bellenger and Staunton, 2008; Chorover et al., 2008). In iron rich sedi-
ments, adsorption to both aluminosilicate clays and Fe(III)-oxyhydroxide
minerals will have a significant control over Sr2+ mobility with pH im-
portant in controlling the mineral surface charge and therefore the ex-
tent of cation adsorption (Chiang et al., 2010). Clay minerals (eg illite,
chlorite, kaolinite and montmorillonite) provide important adsorption
surfaces for cations even at low pH due to their relatively low PZC (pH
4–6) and permanent structural charge, (Hussain et al., 1996; Dyer et
al., 2000; Coppin et al., 2002; Zhuang and Yu, 2002; Alvarez-Silva et
al., 2010)whilst Fe(III)-hydroxides tend to contribute significant adsop-
tion sites at higher pH (PZC pH 7–8) (Small et al., 1999; Hofmann et al.,
2005). With increasing pH and alkalinity, groundwater will become
oversaturated with regard to carbonate phases and at high Sr2+ con-
centrations, this may allow the precipitation of Sr2+ as strontianite
(SrCO3) or at lower Sr2+ concentrations, the incorporation of Sr2+

into CaCO3 phases such as calcite or aragonite (Zachara et al., 1991;
Tesoriero and Pankow, 1996; Greegor et al., 1997; Parkman et al.,
1998; Finch et al., 2003; Fujita et al., 2004; Mitchell and Ferris, 2005).
Additionally, where phosphate is present in the contaminated environ-
ment at significant concentrations, the sequestration of Sr2+ by phos-
phate minerals such as apatite is also likely to be a significant control
on its behaviour (Handley-Sidhu et al., 2011).

Microbial metabolism has the ability to affect the geochemistry
and mineralogy of subsurface sediments, as a result “bioreduction”
systems have been considered for the remediation of groundwaters
containing the redox active radionuclides Tc and U (Lloyd and
Renshaw, 2005). Tc and U have been shown to be immobilised by re-
duction from the more soluble Tc(VII) and U(VI) to poorly soluble Tc
(IV) and U(IV) during Fe(III) reducing conditions (Lloyd, 2003; Law et
al., 2010, 2011). As radioactive 90Sr is often found as a co-
contaminant in Tc/U contaminated land (Riley and Zachara, 1992;
Hartman et al., 2007; McKenzie and Armstrong-Pope, 2010), under-
standing the behaviour of Sr2+ during bioreduction is essential in
predicting and managing the mobility of this problematic contami-
nant in both natural and engineered bioreduction scenarios. During
bioreduction the solution pH will be affected by the reaction products
which include OH− and HCO3

−, and metal reduction will affect sedi-
ment mineralogy (Law et al., 2010; Thorpe et al., 2012). Reductive
dissolution of bioavailable Fe(III)/Mn oxides and formation of new
Fe(II) mineral phases may result in Sr2+ that was sorbed to Fe(III)
oxide surfaces being released due to mineral dissolution (Langley et
al., 2009a, b). However, it has been shown that during Fe(III) oxide
crystallisation adsorbed contaminant metals (e.g. Pb2+) can become
incorporated into the newly formed phase, therefore, the effect of
Fe(III) oxide recrystallisation has the potential to increase or decrease
Sr2+ environmental mobility. At the same time, the increase in pH
caused by bioreduction processes may lead to enhanced removal of
Sr2+ through increased sorption to mineral surfaces and carbonate
precipitation/substitution (Roden et al., 2002; Mitchell and Ferris,
2005; Chorover et al., 2008). Microbial metabolism can result in the
production of CO3

2−/HCO3
− which promotes alkaline pH conditions

and supersaturation with regard to carbonate mineral phases
(SrCO3 or CaCO3) in which Sr2+ can be precipitated (Coleman et al.,
1993; Fujita et al., 2004; Mitchell and Ferris, 2005). These processes
can also lead to siderite (Fe(II)CO3) formation during microbial re-
duction of Fe(III), which may result in minor Sr2+ becoming incorpo-
rated into the newly formed mineral phase (Parmar et al., 2000;
Roden et al., 2002).

Here,we consider the effects ofmicrobialmetabolismon the biogeo-
chemistry and speciation of Sr2+ in conditions relevant to radioactively
contaminated sites using stable Sr2+ as an analogue for 90Sr. Specifical-
ly, sub-surface nitrate concentrations are often elevated and have been
reported in excess of 100 mMsomenuclear facilities (Riley and Zachara,
1992; Finneran et al., 2002; Fredrickson et al., 2004; Istok et al., 2004;
Senko et al., 2005; McKenzie and Armstrong-Pope, 2010). In this
study, we have examined the behaviour of Sr2+ during the
development of bioreducing conditions in sediments representative of
the Sellafield nuclear facility that have been amended with between
0.3 and 100 mM nitrate. We tested the hypothesis that an increase in
OH− and CO3

2−/HCO3
− during nitrate reduction may lead to increased

adsorption of Sr2+ to mineral surfaces and, once over-saturation was
reached, the precipitation and or incorporation of Sr2+ into carbonate
phases at the high Sr/Ca ratio used in this study (1:1.5). Overall, our
aim is to assess whether bioreduction approaches may be relevant to
a range of problematic radionuclides including redox active U and Tc
as well as 90Sr and thus provide a holistic remediation strategy where
co-contamination of these radionuclides occurs.

2. Methods

2.1. Experimental section

2.1.1. Sample collection
Sediments representative of the Quaternary unconsolidated allu-

vial flood-plain deposits that underlie the UK Sellafield reprocessing
site were collected from the Calder Valley, Cumbria, during December
2008 (Law et al., 2010). The sampling area was located ~2 km from
the Sellafield site and sediments were extracted from the shallow
sub-surface (Lat 54°26′30 N, Long 03°28′09 W). Sediments were
transferred directly into sterile containers, sealed, and stored at 4 °C
prior to use.

2.1.2. Bioreduction microcosms
Sediment microcosms (10±0.1 g Sellafield sediment, 100±1 ml

groundwater) were prepared using a synthetic groundwater repre-
sentative of the Sellafield region (Wilkins et al., 2007) that was ma-
nipulated to produce a range of treatments (Table 1). Aerated
systems were first established at variable pH (4.5, 5.5 and 7) to assess
Sr2+ sorption in oxic systems. Following this a range of sealed micro-
cosm systems were prepared. Unbuffered systems with an initial pH
of ~5.5, and representative of the mildly acidic in situ pH at the sam-
ple site, were prepared with 0.3, 10, and 25 mM nitrate amendments.
Bicarbonate buffered systems with an initial pH of ~7 were prepared
with 0.3, 10, 25, and 100 mM nitrate amendments. Sodium acetate
was added as an electron donor in excess of available electron accep-
tors (10 mM for 0.3–10 mM nitrate treatments, 20 mM for 25 mM ni-
trate treatments and 70 mM for 100 mM nitrate treatments) and a
deoxygenated NaNO3 solution was used for NO3

− amendment. Finally,
Sr2+ (as stable SrCl2)was added to eachmicrocosm to achieve 1.15 mM
(100 ppm). Both the Sr concentration and the solid-solution ratio were
chosen to allow full geochemical and spectroscopic characterisation and
therefore are very much higher than values of 90Sr encountered at even
the most contaminated sites (Riley and Zachara, 1992; McKenzie and
Armstrong-Pope, 2010). It should be noted that 90Sr has a relatively
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short half-life and thus high specific activity and even for the most
impacted sites where groundwater concentrations of >1000 Bq l−1

have been reported the molar concentration of 90Sr will be very low
(b10−11 mol l−1) compared to our experimental concentrations
(Riley and Zachara, 1992; McKinley et al., 2007; Mckenzie and
Armstrong-Pope, 2010). Triplicate microcosms were then sealed with
buytl rubber stoppers and incubated anaerobically at 20 °C in the dark
for 110–250 days. At appropriate time points, sediment slurry was
extracted under an O2 free Ar atmosphere using aseptic technique and
centrifuged (15,000 g; 10 min) to provide wet sediment pellets and
porewater samples for analysis of bioreduction products and strontium.

2.1.3. Geochemical analyses and imaging
During microcosm sampling, total dissolved Fe, Mn(II), and NO2

-

concentrations were measured with standard UV–vis spectroscopy
methods on a Jenway 6715 UV–vis spectrophotometer (Goto et al.,
1977; Viollier et al., 2000; Harris and Mortimer, 2002). Aqueous
NO3

−, SO4
2−, HCO3

−/CO3
2− and acetate were measured by ion chroma-

tography (Dionex 4000i liquid chromatography). Aqueous Sr2+ and
Ca2+ were measured by ICP-AES (Perkin-Elmer Optima 5300). Total
bioavailable Fe(III) and the proportion of extractable Fe(II) in the sed-
iment was estimated by digestion of ~0.1 g of sediment in 5 ml of
0.5 N HCl for 60 min followed by the ferrozine assay (Stookey,
1970; Lovley and Phillips, 1986). The pH and Eh were measured
with a pH/Eh metre (Denver Instruments, UB10) and probes calibrated
to pH 4, 7 and 10. Standardswere routinely used to check the reliability
of all methods and calibration regressions typically had R2≥0.99. The
elemental composition and bulk mineralogy of the sediment were de-
termined by X-ray fluorescence (Thermo ARL 9400 XRF) and X-ray dif-
fraction (Philips PW 1050 XRD). Selected end point samples were
imaged using Environmental Scanning Electron Microscope (ESEM) in
combination with Backscattering Electron Detection (BSE) and Energy
Dispersive X-ray Analysis (EDAX) (Philips XL30 ESEM-FG).

2.1.4. X-ray absorption spectroscopy
Selected samples from the bicarbonate buffered pH 7 systemswith

10, 25 and 100 mM nitrate amendments were chosen to examine Sr2+

speciation in: (1) oxic sterile control pH 7 sediment; (2) Fe(III)/SO4
2−

reducing end point pH 7.2 sediments, (3) Fe(III)/SO4
2− reducing end

point pH 8.1 sediments; and (4) Fe(III) reducing end point pH 9.3 sed-
iments. Typical concentrations of Sr2+ in these samples were in the
range 600–1000 ppm. Standards: (1) SrCl2 (aq), 3000 ppm (Fisher Scien-
tific), (2) SrCO3 (s) (Fisher Scientific) and (3) natural Sr2+ substituted
aragonite from crushed aragonite mineral sample (Sr2+ concentra-
tion~1000 ppm), were prepared and diluted with boron nitride
where necessary. Samples were transferred to XAS cells under anaero-
bic conditions, cooled to — 80 K with a liquid nitrogen cryostat (see
Nikitenko et al., 2008), and Sr K-edge XAS spectra were collected on
beamline BM26A at the European Synchrotron Radiation Facility
(ESRF). For sediment samples, Sr K-edge spectra (16115.26 keV) were
collected in fluorescence mode using a 9 element solid state Ge detec-
tor. Multiple scans were averaged in Athena version 0.8.061 (Ravel
and Newville, 2005) and normalised XANES data plotted. Background
subtraction for EXAFS analysis was performed using PySpline v1.1
(Tenderholt et al., 2007). EXAFS data were fitted using DLexcurv v1.0
(Tomic et al., 2005) using full curve wave theory (Gurman et al.,
1984) by defining a theoretical model which was informed by the rele-
vant literature (e.g. O'Day et al., 2000; Finch et al., 2003) and comparing
themodel to the experimental data. Shells of backscattererswere added
around the Sr2+ and by refining an energy correction Ef (the Fermi
Energy; which for final fits typically varied between −3.8 and
−2.6), the absorber–scatterer distance, and the Debye–Waller factor
for each shell. Model iterations were performed until a least squares
residual was minimised. Shells were only included in the model fit if
the overall least square residual (the R-factor; Binsted et al., 1992)
was improved by >5%.
3. Results and discussion

3.1. Sediment characteristics

Sediment composition was measured by X-ray fluorescence and
was found to comprise Si (31.57%), Al (7.63%), Fe (3.64%), K (2.79%),
Na (0.99%), C (0.96%), Mn (0.87%), Ti (0.45%), Ca (0.23%) and P, S and
Cl (b0.1%). We note that XRF analyses show that phosphate is present
in our systems at very low concentrations (b0.008%) and is not likely
to be a significant control on Sr2+ behaviour in this system.

Trace metal analysis showed natural Sr2+ to be present in sedi-
ments at 62.8±0.2 ppm and natural aqueous Sr2+ was b1 ppm.
Strontium was added to groundwater media in significant excess to
the natural background at 100 ppm (1.15 mM Sr2+) and Ca2+ was
present at 67 ppm (1.67 mM) thus a Sr/Ca ratio of ~1:1.5 was present
in the synthetic groundwater media. The concentration of 0.5 N HCl
extractable Fe(III) in the sediment was 5.6±0.5 mmol kg−1 prior to
incubation and the sediment pH was ~5.5.

3.2. Sorption to oxic sediment

In sterile control microcosms, increased Sr2+ sorption was ob-
served in microcosms with a high pH and a low ionic strength. For ex-
ample, for a constant ionic strength system (I=0.027 mol dm−3) run
at pH 4.5, 5.5 and 7, the Sr2+ removal from solution was 35.6±1.9%,
47.4±5.3% and 63.2±2.1% respectively (equating to Kd values of 5.5,
9.0 and 17.1 ml g−1). Differences in strontium behaviour in the ster-
ile microcosms were attributed to pH dependent differences in sorp-
tion to mineral surfaces present in the sediment. Sorption to both
clays and Fe(III)-oxyhydroxide surfaces is possible although clay
minerals is likely to predominate in unbuffered microcosms in which
the pH of 4.5–5.5 is above the PZC for many clay minerals (Coppin et
al., 2002; Zhuang and Yu, 2002; Alvarez-Silva et al., 2010) whilst Fe-
oxyhydroxides become more significant as pH approaches their PZC at
pH ~7 (Dyer et al., 2000; Hofmann et al., 2005). Additionally, in control
experiments at pH 7 and with increasing ionic strength (0.027, 0.037,
0.062 and 0.190 mol dm−3) resulting from sodium nitrate and sodium
acetate additions, Sr2+ sorption was 68, 65, 55 and 28% respectively
(equating to Kd values of 21.2, 18.5, 12.2 and 3.8 ml/g), presumably
reflecting increased competition for Sr2+ sorption sites at higher ionic
strengths due to cation exchange processes (Hull and Schafer, 2008).

3.3. Biogeochemistry in sediment microcosms

The unbuffered (initial pH 5.5; nitrate range 0.3–25 mM) and bi-
carbonate buffered (initial pH 7.0; nitrate range 0.3–100 mM) experi-
ments all underwent progressive anoxia and electron acceptors were
utilised in the order NO3

−>NO2
−>Mn/Fe(III)>SO4

2− (Figs. 1 and 2).
Microbially mediated nitrate reduction caused a decrease in pore-
water nitrate and transient accumulation of nitrite in all systems.
The onset of Fe(III) reduction was indicated by an increase in sediment
extractable Fe(II) and thiswas then followed by a decrease in porewater
SO4

2− indicating sulfate reduction. No geochemical changes were ob-
served in sterile control microcosms. In unbuffered systems (initial pH
5.5), as expected, microbial activity was inhibited at low pH and termi-
nal electron accepting processes proceeded more slowly than in the
parallel bicarbonate buffered microcosms (initial pH 7.0) (Figs. 1 and
2) (e.g. Law et al., 2010; Thorpe et al., 2012). However, in the unbuffered
systems, nitrate reduction led to the release of OH− and HCO3

−, amend-
ing the pH such that a pH increase from 5.5 to 6.8, 7.5 and 8.3 occurred
during the reduction of 0.3, 10 and 25 mM nitrate respectively (Fig. 1;
Table 2; Thorpe et al., 2012). Metal reduction commenced once nitrate
reduction had occurred and mid-point 0.5 N HCl extractable Fe(III) re-
duction was observed at approximately 25, 35 and 45 days for systems
with 0.3, 10 and 25 mM nitrate (Fig. 1). Nitrate reduction and the asso-
ciated pH increase in all microcosms coincided with removal of Sr2+



Fig. 1. Unbuffered, microcosm incubation time-series data (days 0−160). (A) pH (B) NO3
−, (C) 0.5 N HCl % extractable sedimentary Fe as Fe(II), (D) SO4

2−, (E) porewater Sr and
(F) porewater Ca. ●=0.3 mM nitrate system; Δ=10 mM nitrate system; ■=25 mM nitrate system. Initial pH in all microcosms was ~5.5. Error bars represent 1σ experimental
uncertainty from triplicate microcosm experiments (where not visible error bars are within symbol size).
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and Ca2+ from solution (Fig. 1). Interestingly, as bioreduction pro-
gressed through Fe(III) and SO4

2− reduction in these dynamic systems,
a small amount of both Sr2+ and Ca2+ (b10% of that sorbed after nitrate
reduction)was remobilised to solution. This re-release coincidedwith a
slight decrease in pH (b0.5 pH units) presumably due to re-
equilibration of the microcosm system following nitrate reduction.
The re-release of sorbed Sr2+ and Ca2+may be due solely to pH depen-
dent sorption/desorption to mineral surfaces or in some systems (for
example above pH 7) there may be release of Sr2+ and Ca2+ sorbed
to Fe(III)-oxyhydroxides as reductive dissolution of the Fe(III) phases
occurred (Small et al., 1999; Roden et al., 2002; Langley et al., 2009a, b).
Fig. 2. Buffered, microcosm incubation time-series data (days 0–160/260). (A) pH, (B) NO3
−

(F) porewater Ca.●=bicarbonate buffered 0.3 mM nitrate system; Δ=bicarbonate buffered
ate buffered100 mM nitrate system. Initial pH in all microcosms was ~7. Error bars represen
ible error bars are within symbol size).
In bicarbonate buffered systems with an initial pH of 7, the final
pH following the reduction of 0.3, 10, 25 and 100 mM nitrate was
7.5, 8.0, 8.5 and 9.4 (Fig. 2: Table 2). Terminal electron accepting pro-
cesses proceeded faster than in unbuffered microcosms with mid-
point 0.5 N HCl extractable Fe(III) reduction occurring at b20 days
for 0.3 and 10 mM nitrate systems and around 40 and 160 days for
systems with 25 and 100 mM nitrate (Fig. 2). As with the unbuffered
systems, Sr2+ and Ca2+ were removed from solution during nitrate
reduction with increasing pH and a small amount (b10% of that
sorbed after nitrate reduction) of Sr2+ and Ca2+ was re-released
into solution in all systems apart from the bicarbonate buffered,
, (C) 0.5 N HCl % extractable sedimentary Fe as Fe(II), (D) SO4
2−, (E) porewater Sr and

10 mM nitrate system;■=bicarbonate buffered 25 mM nitrate system; ◊=bicarbon-
t 1σ experimental uncertainty from triplicate microcosm experiments (where not vis-



Table 2
Percentage strontium sorbed to sediments during nitrate and metal reduction compared to an oxic control.

System Sterile oxic 90% nitrate reduction 90% Fe(III)/SO4 reduction End point

% Sr2+ on sedimenta pH % Sr2+ on sediment pH % Sr on sediment pH Net decrease (−) or increase
(+) of Sr2+ on sediments

Bicarbonate unamended 0.3 mM nitrate 47.0 5.5 54±2.2 6.6 50±2.3 6.7 +~2%
Bicarbonate unamended 10 mM nitrate 47.3 5.5 75±1.8 8.0 55±3.6 7.5 +~9%
Bicarbonate unamended 25 mM nitrate 45.5 5.5 82±2.1 8.2 60±0.5 7.8 +~18%
Bicarbonate amended 0.3 mM nitrate 67.9 7.0 63±1.4 7.0 50±1.8 7.0 −~16%
Bicarbonate amended 10 mM nitrate 64.2 7.0 78±0.7 8.0 57±0.3 7.5 −~6%
Bicarbonate unamended 25 mM nitrate 54.8 7.0 84±0.4 8.5 62±0.7 8.1 +~7%
Bicarbonate unamended 100 mM nitrate 32.6 7.0 93±1.4 9.3 94±0.8 9.3 +~61%

a Differences in Sr2+ sorption to sterile controls occur due to varying pH and ionic strength due to the addition of NaHCO3, Na-acetate and NaNO3.

Table 3
Saturation index for key carbonate minerals in microcosm systems. Modelled using
PHREEQC-2 (Lawrence Livermore National Laboratory database— llnl.dat).

Saturation index (PHREEQC-2)a

Sr2+

(ppm)
Final
pH

Siderite Calcite Aragonite Strontianite

Oxic sediment 100 5.5 −1.16 −3.52 −3.67 −2.87
Bioreduced
sediments

100

Unbuffered
0.3 mM nitrate

100 6.7 1.97 −0.17 −0.32 0.47

Unbuffered
10 mM nitrate

100 7.5 2.76 0.70 0.55 1.35

Unbuffered
25 mM nitrate

100 7.8 3.07 1.18 1.03 1.83

Bicarbonate buffered
0.3 mM nitrate

100 7.0 2.31 0.22 0.08 0.86

Bicarbonate buffered
10 mM nitrate

100 7.2 2.49 0.42 0.28 1.07

Bicarbonate buffered
25 mM nitrate

100 8.1 3.28 1.48 1.33 2.14

Bicarbonate buffered
100 mM nitrate

100 9.3 3.25 2.36 2.21 3.65

Bicarbonate buffered
100 mM nitrate

10 9.3 3.25 2.36 2.21 2.25

Bicarbonate buffered
100 mM nitrate

1 9.3 3.25 2.36 2.21 1.15

Bicarbonate buffered
100 mM nitrate

0.1 9.3 3.25 2.36 2.21 0.25

Bicarbonate buffered
100 mM nitrate

0.01 9.3 3.25 2.36 2.21 -0.75

a Temperature 21 °C, concentration of ions in solution from Table 1, pH as measured.
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100 mMnitrate system (Fig. 2). Here, the final pHwas 9.3 and interest-
ingly, Sr2+ remained associated with the sediment throughout Fe(III)
and sulfate reduction. In this high nitrate loaded system, the utilisation
of 70 mM acetate resulted in the accumulation of 207±4.9 mM of dis-
solved inorganic carbon and amended the pH to alkaline conditions.

For comparison with other studies it is useful to examine distribu-
tion coefficients for Sr2+ (Kd=(solid in g g−1/aqueous in g ml−1)).
Distribution coefficients are only relevant to the specific geochemical
conditions of each system of study and give an indication of the ex-
tent of Sr2+ partitioning onto the solid phase in different systems.
Here Kd values ranged from b10 ml g−1 in systems with a high
ionic strength (0.190 mol dm−3) or a low pH (5.5) and increased to
>50 ml g−1 with increasing pH. The distribution coefficient in sys-
tems with a final pH>9 was calculated to be 133 ml g−1. These Kd

values compare well with literature values where surface sediment
Kd values are typically between 10 and 200 ml g−1 (Deldebbio,
1991; Liszewski et al., 1998; Fernandez et al., 2006) and deeper
more quartz rich sediments have Kd values of b10 ml g−1 (Stephens
et al., 1998; Dewiere et al., 2004).

Modelling of the solution chemistry in bioreduced systems
(PHREEQC-2: LLNL database) suggested that for all unbuffered biore-
duced system end-points, Fe(II)CO3 and SrCO3 were oversaturated in
all the different nitrate amendments whilst the CaCO3 phases were
undersaturated in the bioreduced 0.3 mM nitrate amended systems
and oversaturated in all other treatments (Table 3). As expected for
these carbonate phases, the degree of oversaturation increased as al-
kalinity increased. In the bicarbonate amended bioreduced system
end points, all nitrate amendments showed oversaturation of Fe(II)
CO3, CaCO3, and SrCO3 and with increasing oversaturation with in-
creasing alkalinity (Table 3). Clearly, although unable to resolve the
detail of the dynamic bioreduction experiments, these modelling
data suggest an increased tendency to oversaturation of carbonate
mineral phases with increased nitrate reduction and microbially pro-
duced alkalinity.

ESEM (Environmental Scanning Electron Microcoscopy) was used
to assess the distribution of Sr2+ in end point pH 7 (bicarbonate buff-
ered 10 mM nitrate) and pH 9.3 (bicarbonate buffered 100 mM ni-
trate) sediments (Fig. 3). In backscattering mode image brightness
is related to the average atomic mass present (Z contrast). In the pH
9.3 system, secondary electron and backscatter images in combina-
tion with EDAX analysis show a number localised bright spots of
~20 μm diameter enriched in Sr2+ (Fig. 3) whilst there were no ob-
served localised bright spots in the pH 7 system. Semi-quantitive
analysis of EDAX spectra of the localised bright spots showed a signifi-
cant concentration of Ca2+ and Sr2+ in agreement with predicted
SrCO3 and CaCO3 oversaturation.

In order to further understand Sr2+ speciation during bioreduc-
tion in these complex systems, samples from an oxic pH 7 control
with Sr2+ sorption, and selected bicarbonate buffered, nitrate
amended (0.3, 25 and 100 mM) bioreduced end points with a final
pH of 7.2, 8.1 and 9.3 were analysed using X-ray absorption spectros-
copy. XANES spectra for all samples show a single peak indicative of 9
fold coordination and there was no evidence for 6 fold coordination
(as in the calcite standard which has a clear doublet). Thus our experi-
ments show no evidence for Sr2+ substituted calcite formation (Fig. 4;
Parkman et al., 1998). XANES spectra for the oxic, bioreduced pH 7.2,
andbioreducedpH8.1 samples all comprised a single peak and compared
well with a SrCl2 aqueous standard, implying that in these sediments,
after bioreduction, Sr2+ was present primarily as adsorbed Sr2+

(Fig. 4). By contrast, the XANES spectra for the pH 9.3 bioreduced sam-
ple showed some evidence for peak flattening and thus some similarity
to the model Sr-carbonate phases (e.g. strontianite and Sr-substituted
aragonite) (Fig. 4). Modelling of the EXAFS spectra for the oxic, biore-
duced pH 7.2 and bioreduced pH 8.1 samples showed an approximate
9-fold coordination environment at 2.60 Å, indicative of outer sphere
Sr2+ adsorption to mineral surfaces (Parkman et al., 1998; Chen and
Hayes, 1999; Carroll et al., 2008; Fig. 5; Table 4). EXAFS for the pH 9.3
bioreduced sample could also be modelled with 9 fold “outer sphere”
co-ordination. However, EXAFS model fits for this system were signifi-
cantly improved by addition of shells of carbon and strontiumbackscat-
ters at 3.03, 4.18 and 4.87 Å (Table 4; Fig. 5) respectively. This clearly
indicates a contribution from an additional Sr2+ species in this spec-
trum with bond distances indicative of SrCO3 (Parkman et al., 1998;



Fig. 3. ESEM images of the Fe(III) reducing bicarbonate buffered 100 mM nitrate sample at final pH 9 containing Sr- and Ca-rich crystalline structures and corresponding EDAX spec-
tra. Images show: (A) ESEM backscatted detection mode image of sediment indicating heavier elements (Sr) as bright patches in the field of view 300 μm; (B) Secondary electron
image showing the structure of Sr/Ca rich area at a field of view 3 μm; (C) the energy dispersive electron analysis (EDAX) spectra for the entire sample; and (D) a spot EDAX analysis
on the Sr/Ca rich structure.
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O'Day et al., 2000). Further analysis showed that a model EXAFS fit was
possible with additional shells of 2.6 carbon atoms at 3.03 Å, 2.8 stron-
tium atoms at 4.18 Å and 2.5 strontium atoms at 4.87 Å; these values
Fig. 4. Normalised Sr K-edge XANES spectra for selected standards and microcosm sys-
tems. From top to bottom: SrCl2 aqueous standard, oxic sediment sample, bioreduced
pH 7.2 sample, bioreduced pH 8.1 sample, bioreduced pH 9.3 sample, Sr substituted
aragonite standard and strontianite standard.
are approximately 50% ofwhat is expected for pure SrCO3, which is con-
sistent with a model where approximately half of Sr2+ is present in a
SrCO3 like environment (Table 4; Fig. 5). Indeed, this model, which is
geochemically sensible, resulted in a better fit to the spectrum and a
27% reduction in the least square residual when compared to the data
modelled as 100% adsorbed Sr2+ suggesting that both adsorption and
incorporation occurred in this system (Table 4).

In natural and engineered environments concentrations of Sr2+

and 90Sr are generally much lower than in these experiments (eg
0.1 ppm natural Sellafield groundwater) (Wilson, 1996). Under
Sellafield conditions, model simulations predicted that bioreduced
system even at pH 9 would be undersaturated with regard to SrCO3

below ~0.1 ppm strontium (Table 3); nonetheless, at a pH>7,
systems would remain supersaturated with respect to CaCO3. It is
therefore feasible that substitution of Sr2+ into CaCO3 rather than
precipitation as SrCO3 will be important in controlling the mobility
of both natural Sr2+ and artificial 90Sr in such systems. Indeed, it is
well documented that Sr2+ can substitute for Ca2+ within the calci-
um carbonate lattice (Pingitore et al., 1992; Tesoriero and Pankow,
1996; Greegor et al., 1997; Warren et al., 2001; Finch et al., 2003).
Recent studies, focused on bacterial urolysis, have found that Sr2+

incorporation into the CaCO3 lattice was enhanced by the rapid pre-
cipitation rates resulting from HCO3

- production and the pH rise asso-
ciated with microbial respiration (Fujita et al., 2004; Mitchell and
Ferris, 2005). Both a pH rise and dissolved organic carbon production
were observed during bioreduction by indigenous microorganisms
in this study suggesting that nitrate reduction might also result in
enhanced Sr2+ uptake into calcite compared to those observed
under slower precipitation rates.



Fig. 5. Experimental (solid) and theoretical best fit (dashed) EXAFS spectra and corresponding Fourier transforms obtained for (from top to bottom): SrCl2 aqueous standard, oxic
sediment sample, bioreduced pH 7.2 sample, bioreduced pH 8.1 sample, bioreduced pH 9.3 sample, Sr substituted aragonite standard and strontianite standard. Solid lines are the
data and dashed lines are the fits to the data.
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3.4. Summary and environmental relevance

Overall, our experiments showed that there is increased Sr2+ re-
moval from solution during bioreduction in nitrate impacted sedi-
ments compared to sterile control systems. In systems with an
initially low pH (5.5), removal of Sr2+ from solution after bioreduc-
tion was particularly enhanced, presumably due to the increased
sorption onto deprotonated mineral surfaces as the pH increased
above 6. After nitrate reduction, system re-equilibration and an asso-
ciated decrease (b0.5 pH units) in pH resulted in modest (b10%) re-
release of Sr2+ into solution highlighting the vulnerability of
adsorbed Sr2+ to re-release due to changing geochemical conditions.
Table 4
Parameters obtained from EXAFS data fitting of Sr K-edge spectra from Sr2+ associated
with sediment at various sediment conditions.

Sample Shell no Bond C.N. R(Å) 2σ2 (Å2) R-factor

SrCl2 1 Sr\O 8.75 2.60 0.029 23.0
Oxic sample pH 7 1 Sr\O 8.83 2.61 0.019 22.1
Bioreduced pH 7.2 1 Sr\O 8.68 2.60 0.020 18.0
Bioreduced pH 8.1 1 Sr\O 8.89 2.61 0.021 19.6
Bioreduced pH 9.3 (1) 1 Sr\O 8.03 2.60 0.024 27.9
Bioreduced pH 9.3 (2) 1 Sr\O 8.19 2.61 0.021 20.2

2 Sr\C 2.68 3.03 0.015
3 Sr\Sr 2.78 4.18 0.029
4 Sr\Sr 2.47 4.88 0.024

Strontianite 1 Sr\O 9a 2.64 0.027 20.3
2 Sr\C 6a 3.04 0.032
3 Sr\Sr 6a 4.22 0.029
4 Sr\Sr 4a 4.97 0.033

Sr substituted aragonite 1 Sr\O 9a 2.59 0.015 29.1
2 Sr\C 6a 2.98 0.031
3 Sr\Ca 6a 4.02 0.020
4 Sr\Ca 4a 4.87 0.013

N is the occupancy (±~25%), R(Å) (is the interatomic distance (±~0.02 Å), 2σ2 is the
Debye–Waller factor (Å2) and R (least squares residual) is a measure of the overall
goodness of fit.

a Fixed.
In extreme environments with very high (100 mM) nitrate concen-
trations, bioreduction led to a final pH of >9 and enhanced removal
of Sr2+ from solution occurred throughout the bioreduction cascade.
This study has shown that in very high nitrate systems an increase in
pH and dissolved inorganic carbon associated with microbial reduction
andparticularly denitrification can promote the precipitation and incor-
poration of Sr2+ into carbonate phases although the engineering as-
pects of this process are as yet unexplored. Clearly, radio-strontium
incorporation into carbonate phases is desirable in remediation scenarios
as they are redox insensitive phases and are potentially more resistant
to remobilization than sorbed Sr2+. It is also clear that bioreduction sce-
narios have the potential to impact Sr2+ mobility in the subsurface and
that understanding the bioreduction behaviour of redox inactive radio-
active contaminants can be of significance in assessing the efficacy of
bioreduction schemes at nuclear facilities. We further suggest that
under constrained conditions, bioreduction may have the potential to
co-treat redox active radionuclides and 90Sr increasing the range of ap-
plications for this clean-up technology across the global nuclear waste
legacy.
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