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ABSTRACT 

Red mud is highly alkaline (pH 13), saline and can contain elevated concentrations of several 

potentially toxic elements (e.g. Al, As, Mo and V). Release of up to 1 million m3 of bauxite residue 

(red mud) suspension from the Ajka repository, western Hungary, caused large scale contamination 

of downstream rivers and floodplains. There is now concern about the potential leaching of toxic 

metal(loid)s from the red mud as some have enhanced solubility at high pH. This study investigated 

the impact of red mud addition to three different Hungarian soils with respect to trace element 

solubility and soil geochemistry. The effectiveness of gypsum amendment for the rehabilitation of 

red mud-contaminated soils was also examined. Red mud addition to soils caused a pH increase, 

proportional to red mud addition, of up to 4 pH units (e.g. pH 7  11). Increasing red mud addition 

also led to significant increases in salinity, dissolved organic carbon (DOC) and aqueous trace 

element concentrations. However, the response was highly soil specific and one of the soils tested 

buffered pH to around pH 8.5 even with the highest red mud loading tested (33% w/w); experiments 

using this soil also had much lower aqueous Al, As, and V concentrations. Gypsum addition to soil / 

red mud mixtures, even at relatively low concentrations (1% w/w) was sufficient to buffer 

experimental pH to 7.5-8.5. This effect was attributed to the reaction of Ca2+ supplied by the gypsum 

with OH- and carbonate from the red mud to precipitate calcite. The lowered pH enhanced trace 

element sorption and largely inhibited the release of Al, As and V.  Mo concentrations, however, 

were largely unaffected by gypsum induced pH buffering due to the greater solubility of Mo (as 

molybdate) at circumneutral pH. Gypsum addition also leads to significantly higher porewater 

salinities and column experiments demonstrated that this increase in total dissolved solids persisted 

even after 25 pore volume replacements. Gypsum addition could therefore provide a cheaper 

alternative to recovery (dig and dump) for treatment of red mud affected soils. The observed 

inhibition of trace metal release within red mud affected soils was relatively insensitive to either the 

percentage of red mud or gypsum present, making the treatment easy to apply. However, there is 

risk that over-application of gypsum could lead to detrimental long term increases in soil salinity.  

KEYWORDS: Alkaline red mud, contaminated soils, gypsum, toxic trace elements, arsenic, vanadium, 

aluminium, organic matter leaching, pH reduction.  



INTRODUCTION 

 Fine fraction bauxite residue (red mud) is a by-product of alumina refining, with up to 120 

million tonnes produced worldwide each year (Grafe and Klauber 2011). Red mud typically 

comprises residual iron oxides, quartz, sodium aluminosilicates, titanium dioxide, calcium 

carbonate/aluminate and sodium hydroxide which raises the pH up to 13 (Grafe et al. 2011; 

Gelencser et al. 2011; Burke et al. 2012). The failure of the bauxite residue dam at the Ajkai 

Timfoldgyar Zrt alumina plant, western Hungary, on the 4th October 2010 resulted in the release of 

up to 1 million m3 of caustic red mud suspension (Reeves et al. 2011). The waste inundated homes 

and land downstream causing 10 deaths and over 150 serious injuries. Approximately 40 km2 of 

agricultural and urban land was affected and the red mud was transported over 120 km downstream 

(Mayes et al. 2011; Reeves et al. 2011). This was the largest recorded environmental release of red 

mud and, as such, studies on the after-effects of the spill have both improved the knowledge-base 

on risks associated with red mud (Gruiz et al. 2012) and informed broader management strategies 

for stockpiled red mud. At Ajka, Hungary, red mud samples contained elevated concentrations of 

potentially toxic trace elements such as Al (75000 mg kg-1), As (150 mg kg-1) and V (900 mg kg-1) 

(Mayes et al. 2011; Ruyters et al. 2011). Red mud leachates are also hyperalkaline (pH 13), and can 

be directly toxic to aquatic life (Wilkie and Wood 1996). Equally important is the enhanced mobility 

of several oxyanionic forming trace elements at high pH (Langmuir 1997). Indeed, water in contact 

with Ajka red mud had dissolved Al concentration of 800 mg L-1, and dissolved As, V, and Mo 

concentrations of 4 - 6 mg L-1 (Mayes et al. 2011).  

The initial response to the accident was to dose affected rivers with weak acids and gypsum 

(up to 23,500 t: Rédey 2012) to neutralise the water, and (in some cases) to plough the red mud into 

the fields to prevent dust formation (Burke et al. 2012; Gelencser et al. 2011; Renforth et al. 2012). 

Longer term strategies included the building of new containment dams and the large scale recovery 

of red mud deposits from affected land, although thin deposits of red mud (< 5 cm) were not 

routinely recovered (Klebercz et al. 2012). Studies on the effect of the red mud in soils conducted in 



the weeks following the spill suggested that the high NaOH present inhibits plant growth (Ruyters et 

al. 2011), however, little is known about the longer term leaching and potential for bioaccumulation 

of metal(loids) into plants grown in soils affected by the Ajka red mud spill.  

Acid dosing and gypsum addition to rivers were both effective in lowering pH values and 

metal(loid) concentrations in river waters downstream of the spill (Burke et al. 2012; Mayes et al. 

2011; Renforth et al. 2012). Lack of Ca2+ in red mud leachate (Renforth et al. 2012) limits the natural 

pH reduction mechanism (Equations 1 and 2). Providing excess free Ca2+ is therefore the main effect 

of gypsum addition. The reaction, which involves CO2 in-gassing to form calcite with net OH- 

removal, can be rapid in high pH systems (Renforth et al. 2012).  

  (1) 

 (2) 

The Ca2+ provided by gypsum addition can also displace Na+ from exchange complexes and 

potentially reduces salt stress to vegetation (Grafe and Klauber 2011; Grafe et al. 2011). Although 

gypsum addition has also been shown to be very effective in the rehabilitation of stock-piled red 

mud (Courtney and Kirwan 2012; Courtney and Timpson 2004, 2005), studies have focussed 

primarily on soil sodicity and availability of major ions (e.g. Al, Na, Ca: Courtney and Kirwan 2012; 

Courtney and Harrington 2012; Courtney et al. 2009) and less on the mobility of potentially toxic 

trace elements (e.g. As, Mo and V). At Ajka, gypsum addition to affected soils was not attempted, 

but it is therefore possible that gypsum addition may have been a useful tool for soil stabilisation 

and negated the need for such extensive recovery of marginally-contaminated soils. Indeed, this was 

highlighted as a more appropriate and cost-effective alternative approach for dealing with red mud-

contaminated floodplain areas in official reviews of the disaster response (Adam et al. 2011).  

 The primary objective of this study was to investigate the potential geochemical effects of 

red mud mixing with several different soils collected from the Torna and upper Marcal catchments. 



Batch experiments were used to determine the evolution of chemical properties (e.g. pH, salinity) 

when soil was mixed with red mud. The solubility of several potentially problematic elements (Al, As, 

Mo and V) was investigated as a function of red mud loading and the resultant perturbation in soil 

pH. Finally, gypsum was added to soil / red mixtures in batch and column tests to determine the 

effectiveness of gypsum addition for treatment of red mud-contaminated soils. As such, the study 

provides information not only on potential remedial strategies for environmental release of red mud 

but also provides analogue data on the soil and leachate quality that would be anticipated in 

amended red mud in bauxite residue disposal areas (BDRAs).  

 

MATERIALS AND METHODS 

Sample Collection. Samples were collected in May 2011. Red mud was collected from inside 

the breached Ajka repository (Lat. 47°4’58”N, Long.17°29’34”E) and three soil samples (that did not 

receive red mud during the 2010 spill) were collected from sites representative of the varying land 

uses and landforms in the affected Torna and Upper Marcal catchment, western Hungary. Soil H1 

was an agricultural topsoil (Lat. 47°6’38”N, Long. 17°23’43”). Soil H2 was a non-agricultural topsoil 

sampled from below the rootlet layer at 10-50 cm (Lat. 47° 5’46”N, 17° 15’1”E). Soil H3 was a 

wetland soil from within a reed bed area (Lat. 47°5’56”N, Long. 17°13’41”E). The Hungarian soils 

were used in the batch experiments described below. The column experiments (also described 

below) required significantly greater amount of soil than was originally sampled. Therefore, a well 

characterised sandy silt loam (soil E1), collected from north western England in May 2009, was used 

in column experiments. All red mud and soils were stored at 4°C ±2°C in polypropylene containers 

until used. Soil H3 was stored anaerobically using Anaerogen™ sachets.  

Sample Characterization. The red mud and soil samples (after oven drying (105 ⁰C) and 

grinding in a mortar and pestle) were characterised by X-ray powder diffraction using a Bruker D8 

Advance XRD, X-ray fluorescence using a PANalytical Axios Advanced XRF spectrometer (data 



corrected for loss on ignition; % weight loss after furnace treatment at 1050 ⁰C), total organic carbon 

analysis using a Carlo Erba NA 2500 Elemental Analyser. The pH was determined (using homogenised 

field moist soils) after 10 g : 10 mL suspension in deionised water [ASTM method D4972-01]. The BET 

surface area was determined (on oven dried samples) after degassing with N2 on a Micromeritics 

FlowPrep 060 sample degas system prior to analysis with a Micromeritics Gemini V BET surface area 

analyser. Principal Component Analysis (PCA) of the red mud and soil samples was under-taken on 

standardized elemental concentration data and compared against other published samples from the 

red mud contaminated catchment (Mayes et al. 2011). 

Batch Experiments. All soils and the red mud were homogenised by hand before 

establishing experiments, but otherwise were used as collected. Batch experiments were established 

by mixing soils H1, H2 and H3 with red mud to achieve final concentrations of 0, 1, 5, 9, 20, and 33% 

red mud on a dry weight basis. (After the Ajka spill, red mud deposits in fields varied from <1cm to, 

at most, ~20cm; and all deposits >5cm were routinely recovered (Klebercz et al. 2012). If red mud 

was ploughed into soils to a typical depth of ~40-50 cm, an approximate 5:50 mixing ratio (~9%), 

would therefore, be an important condition for study. Larger additions, up to 33% red mud, were 

only considered as worst case scenario.)  The soil / red mud mixtures where suspended at 200 g L-1, 

in deionised water in 15 ml polypropylene centrifuge tubes, and continuously shaken on an orbital 

shaker (100 rpm) for 30 days. In order to maintain an aerobic headspace, each tube was opened 

daily (5 days per week). Additional batch experiments were established with the same red mud 

conditions as above but with 4% (w/w) addition of gypsum (CaSO4·2H2O). Finally a set of batch 

experiments was established which contained 9% (w/w) red mud, with varying quantities of gypsum 

to achieve 0, 1, 4, 8, 12, and 15% gypsum additions on a dry weight basis. After 30 days equilibration, 

all tubes were centrifuged (6000 g) for 5 minutes to separate aqueous and solid phases. All aqueous 

samples were then membrane filtered (0.2 µm). Duplicate experiments were performed at two key 

conditions (9% red mud, and, 9% red mud +4% gypsum) in all three soil types as a check on data 

reproducibility (duplicate data is reported in Appendix A, TableA1).  



Column Experiments. 500 g of Soil E1 (< 2 mm fraction) was homogenised and mixed with 

red mud (8% w/w) with and without gypsum addition (also 8% w/w). The amended soils were hand 

packed into glass Omnifit™ columns (400 mm length, 50 mm diameter) with Teflon end pieces and 

50 μm filters at both the influent and effluent ends. Columns were saturated with deionised water 

and left to equilibrate overnight. Thereafter, deionised water was pumped vertically upwards 

through the columns using an isocratic pump at (0.06 mL/min; 86.4 mL/day), with influent at the 

column bottom and effluent at the top. This rate of pumping equated to approximately 1 pore 

volume per day (determined as the weight difference of dry and saturated columns). Pumping was 

continued until approximately 25 pore volumes had passed through each column. At each sampling 

point, the volume of effluent was recorded and water samples were collected and filtered (0.2 µm).  

Geochemical Analysis. Sample pH was measured using a Microprocessor pH meter with 

electrodes calibrated at pH 7 and 10 using standard buffer solutions; Total Dissolved Solids (TDS) was 

determined using a Myron Ultrameter calibrated with a KCl solution. Solution colour was 

determined by measuring the absorbance at 254 nm using an Uvikon XL spectrophotometer and a 

quartz cell. Dissolved organic carbon (DOC) was measured on a multi N/C® 2100 using 

thermocatalytic oxidation, MC-NDIR detection analysis. In these experiments, absorbance at 254 nm 

and DOC concentrations were found to be significantly correlated (Pearson’s correlation: r = 0.93, P 

= <0.001, n = 27), therefore, absorbance at 254 nm was used routinely to estimate sample DOC 

concentration (DOC analysis was performed on 40% of the samples). As, V and Mo concentrations 

were determined in aqueous samples (after acidification with 2% HNO3) on a Perkin–Elmer Elan 

DRCII inductively coupled plasma-mass spectrometer (ICP-MS) (LoD = 0.49, 0.25, and 0.86 μg L-1 

respectively). Aluminium concentrations were determined by using Flame Atomic Absorption 

Spectroscopy (FAAS) on an Analytic Jena ContrAA 700 (after acidification with 2% HCl; LoD = 200 μg 

L-1)  

 

RESULTS 



Sample Characterization. The red mud mineral content is dominated by hematite, calcite, 

magnetite, cancrinite and hydrogarnet (with some residual boehmite and gibbsite), which is very 

similar to other red mud analysed from the Ajka spill (Burke et al. 2012; Gelencser et al. 2011). 

Sample characterisation data for the red mud, the three Hungarian soils (H1-3) and soil E1 are 

summarised in Table 1. Principal Component Analysis compared the elemental composition of the 

red mud sample and the three Hungarian soil samples (shown in Table 2) to other surface and fluvial 

samples from the affected region (Mayes et al. 2011). Results (Figure 1) show that the soil sample 

compositions were consistent with other unaffected reference samples from the area and the red 

mud composition was consistent with other source term red mud samples from the Ajka repository.  

Red Mud Addition to Soils. The addition of alkaline red mud caused an increase in 

experimental pH that increased with red mud loadings (Figure 2a). At low red mud additions (< 10%) 

pH increases were limited to 1-1.5 pH units for all three soils. At the highest red mud loadings (33%) 

pH increases of 3-4 pH units from pH 7-8 to around pH 11 occurred in experiments using soil H1 and 

H3, however, soil H2 buffered pH more effectively and pH increases were limited to 2 pH units (pH 

6.5 to 8.5). TDS increased modestly in all experiments with increasing red mud addition (Figure 2b) 

with TDS increasing by around 500 mg L-1 to ~1500 mg L-1 in experiments receiving the highest red 

mud loading. DOC concentrations also increased with increasing red mud addition (Figure 2c) but 

the response was soil specific; experiments containing soil H3 had relatively lower aqueous DOC 

concentrations at higher red mud loadings. Concentrations of Al, As, V, and Mo in experiments also 

increase with increasing red mud addition (Figure 3a-d). Experiments containing soil H2 had 

relatively lower aqueous concentrations of Al, As and V compared to soil H1 or H3, but Mo 

concentrations were comparable in all three soils.  

Gypsum Addition to Red Mud / Soil Mixtures. When 4% gypsum was added to experiments 

the observed pH increases were much lower compared to experiments without gypsum (Figure 2d). 

There was a smaller increase of pH (up to 1 pH unit) observed with increasing red mud loadings and 

no experiments had pH values above 8.5 even with 33% red mud addition. TDS, however, was much 



higher in gypsum containing experiments (Figure 2e). Also the gradient of TDS increases with 

increasing red mud addition was greater, with TDS increasing by nearly 2000 mg L-1 to around 4000 

mg L-1 as red mud addition increased from 0 to 33%. Aqueous DOC concentrations in gypsum 

amended experiments were significantly lower compared to experiments without gypsum (Figure 2f) 

and there was no observed change in DOC concentrations with increasing red mud addition. 

Aqueous Al, As and V concentrations in gypsum amended experiments (Figure 3e-g) were also much 

lower than in unamended experiments. Aqueous Mo concentrations, however, were only slightly 

lower in gypsum amended experiments (Figure 3h).  

 In experiments where the amount of gypsum added was varied (from 0 to 15%) and red mud 

addition was constant (9%), it was discovered that the soils tested were relatively insensitive to 

increasing gypsum addition (Figure 4). Approximately equal reductions in pH and aqueous DOC, Al, 

As and V values were observed with 1 to 15% gypsum addition. The observed TDS increase (Figure 

4b) was about 1000 mg L-1 between 0 and 1% addition and further increased to about 2800-3000 mg 

L-1 with 4% gypsum present. No further increase in TDS was observed for gypsum addition above 4%. 

Aqueous Mo concentrations do not show any reduction at any level of gypsum addition (Figure 4g) 

 Column Experiments. The pumped column experiments compared the changes with column 

volume in effluent pH and TDS, DOC and Al concentrations (Figure 5), in tests containing soil /red 

mud mixtures (8%), both with and without the presence of gypsum (at 8%). Addition of gypsum 

induces a reduction in effluent pH of about 1 pH unit compared to the unamended column. Both 

DOC and Al concentrations are lower in effluent from the gypsum amended column. Over the course 

of the experiment the difference in DOC and Al concentrations in amended and unamended columns 

decreases, however, the overall export of aqueous DOC and Al in particular is attenuated. TDS spiked 

at over 40 g L-1 in the first sample collected from the gypsum amended column, but reduced quickly 

to around 2-3 g L-1, which was maintained until the end of the test. Total TDS export in the 

unamended column was much lower.   



 

DISCUSION 

Effect of red mud contamination on Hungarian soils.  Addition of red mud to soils induced 

the following effects, increasing proportionally to the amount of red mud added: 1) increase in pH, 

2) increase in aqueous DOC concentrations, 3.) increase in aqueous metal(loid)s concentrations, and 

4) increase in salinity (TDS). The red mud suspension released on the 4th October 2010 was highly 

alkaline (pH 13), contained elevated concentrations of potentially soluble trace elements such as Al 

As Mo and V, and was highly saline (Klebercz et al. 2012; Milacic et al. 2012); therefore, the results 

observed in these experiments are to some extent expected. Soil specific behaviour, however, was 

observed. One of the soils tested (Soil H2) more effectively buffered the alkalinity added with the 

red mud, possibly due to the higher organic carbon content of this soil. This resulted in more modest 

increases in pH and trace element concentrations in experiments using soil H2 compared to those 

using soil H1 and H3.  Interestingly, the higher pH buffering capacity observed for soil H2 was very 

similar to that of the single Hungarian soil sample used by Ruyters et al (2011) who also reported 

relatively small pH increases and no significant increase in trace metal concentrations in experiments 

using soil / red mud mixtures (up to 17% w/w red mud). In the present study significant increases in 

pH and trace element concentration were observed at red mud loadings less than 10% w/w using 

two of the three soils studied.  

The pattern of increasing DOC concentrations with increasing red mud addition has not been 

reported previously, but can be explained by the reaction between the alkalinity present in the red 

mud and organic matter present in the soils.  Red mud contains elevated concentrations of NaOH 

and Na2CO3, both of which have been used in alkaline extractions designed to solubilise natural 

organic matter (Séby et al. 1997; Macleod and Semple 2000). Furthermore, in other studies 

increases in DOC under analogous hyperalkaline conditions associated with a steel slag / wood 

shavings mix have been ascribed to alkaline hydrolysis that releases low molecular weight carboxylic 



acids (Karlsson et al. 2011). Therefore, red mud addition to soils produces an unintended alkaline 

extraction liberating organic matter to solution. Along with clay mineral dissolution (Fernandez et al. 

2009; Deng et al. 2006) and sorption reactions (Konan et al. 2012), the reaction of alkalinity with 

natural organic matter will therefore be one of the main short term mechanisms for pH buffering in 

red mud / soil mixtures. Also, at higher red mud loadings, where alkalinity may be present in excess, 

the supply of extractable organic matter may limit DOC concentrations. The increased DOC loss from 

red mud affected soils in of itself has potential for wider environmental impacts in terms of 

degradation of soil fertility and quality, loss of carbon storage and impacts on downstream water 

quality.  

Effectiveness of Gypsum for the Treatment of Red Mud contaminated Soils.  Gypsum 

addition is highly effective in controlling soil pH even under high red mud loading (maximum pH 

observed in experiments was 8.5). Gypsum addition to red mud affected soils buffers pH by 

providing a source of available Ca2+ that can react with soluble alkalinity (both carbonate and 

hydroxide) to produce calcite and a pH reduction (see equation 2). The formation of calcite also 

provides solid alkalinity that helps buffer the system to any further changes in pH. The consumption 

of alkalinity prevents the alkaline extraction of natural organic matter and thus produces lower DOC 

concentrations in gypsum amended experiments. The Ca2+ produced by gypsum dissolution can 

displace Na+ from exchange complexes in the red mud (Grafe et al. 2011). It is also possible that the 

reduction in pH might enhance the dissolution of high pH phases, such the hydrogarnet that is 

present in the red mud (Hillier et al. 2007; Hind et al. 1999). These effects combined with the 

sulphate that is released during gypsum dissolution will all contribute to the increased amount of 

salinity generation observed in gypsum amended batch experiments (i.e. there is a greater relative 

increase in TDS observed as red mud loading is increased in experiments with gypsum present 

compared to experiments without gypsum). This is consistent with an observation made during the 

initial response to the Ajka incident that gypsum dosing of directly affected rivers resulted in an 

increase in sulphate concentration long distances downstream of the spill (Mayes et al. 2011).Batch 



experiments designed to test the effect of varying the concentration of gypsum used found no 

difference in TDS between 4 and 15% additions. This implies that once gypsum is added in excess an 

equilibrium (controlled by the solubility of gypsum) is established that limits TDS release.  

Interestingly the same equilibrium TDS concentration was observed in batch and column tests where 

gypsum was added (Figs, 4b and 5c), implying that gypsum containing soils will continue to export 

salinity until the gypsum is depleted. Overall the column tests also demonstrates that the positive 

effects of 8% gypsum addition (i.e. reduction in pH, Al and DOC concentrations) are maintained over 

many porewater exchanges.  

 In order to understand the effect of gypsum addition on trace element concentrations, 

aqueous Al, As, Mo and V concentrations from all the batch experiments have been plotted as a 

function of the measured pH (Figure 6). In experiments without gypsum present, higher red mud 

loadings lead to both higher additions of trace elements to the soil and higher pH. At the pH of the 

red mud, As, V, Al and Mo are all predicted to be present as soluble oxyanions (as arsenate, 

vanadate, aluminate and molybdate: Langmuir 1997; Takeno 2005). Strong adsorption of both 

arsenate and vanadate to mineral surfaces at circumneutral pH is widely documented (Sherman and 

Randall 2003; Wehrli and Stumm 1989; Genc et al. 2003; Peacock and Sherman 2004). Aluminate 

becomes highly insoluble below about pH 10.5 and precipitates as an amorphous oxyhydroxide 

phase (Burke et al. 2012; Langmuir 1997). The solubility of oxyanion-forming elements is, therefore, 

highly affected by pH, with sorption / precipitation reactions limiting solution concentrations at low 

pH (Langmuir 1997; Peacock and Sherman 2004; Ladeira et al. 2001; Genc-Fuhrman et al. 2004). In 

these experiments significant increases in aqueous Al, As and V concentrations are observed above 

approximately pH 8.5. Addition of gypsum to the soil / red mud mixtures substantially reduces pH, in 

many cases to below 8.5. Therefore, the pH reduction associated with gypsum addition results in 

both an enhancement in sorption (As and V) or precipitation (Al) that effectively inhibits metal(liod) 

release to solution. This pH control also explains the behaviour observed for Soil H2, where greater 

pH buffering leads to lower overall experimental pH and lower aqueous Al, As and V concentrations 



in those tests. Mo, however, only weakly interacts with soil minerals at circumneutral pH (Buekers et 

al. 2010; S Goldberg and Forster 1998; S. Goldberg et al. 1996), and therefore, remains highly soluble 

at the pH values observed in experiments where gypsum was present.  

 

CONCLUSIONS AND IMPLICATONS FOR REMEDIATION  

Addition of red mud to soils causes an increase in pH, TDS, DOC and aqueous concentrations 

of oxyanion-forming trace elements. The extent of the increases observed is ultimately controlled by 

the amount of red mud present; however, the intrinsic ability of the soils to buffer pH is also 

important. Soils with low organic matter and clay content, also have lower buffering capacities, and 

therefore, are more at risk of suffering larger relative increases in pH, Al, As and V concentrations. In 

these experiments, there appeared to be threshold pH value between pH 8.5-9, above which 

significant increases in Al, As and V concentrations occurred. Therefore soil pH measurements could 

be used as a simple screening method to identify red mud affected soils where significant 

deleterious effects might be expected, with pH values higher than 8.5 equating to greater risk.  

Gypsum addition resulted in soil pH values below 8.5 in all experiments and inhibited Al, As, 

V and DOC release. The immobilisation of As, V and Al is related to their enhanced adsorption at 

circumneutral pH. Although adsorption is reversible (e.g. at high pH; Langmuir 1997), the associated 

precipitation of calcite will typically buffer soil pH. However, sorbed oxyanions may be remobilised 

by anion exchange reactions, particularly with phosphate (and to a lesser extent carbonate), at 

circumneutral pH (Genc-Fuhrman et al. 2004; Altundogan et al. 2000). Mo concentrations were not 

affected by gypsum addition as sorption of the molybdate ion to soil minerals is low at circumneutral 

pH. These results indicate that gypsum addition to soils receiving red mud could be used as an 

emergency measure to consume the associated excess alkalinity and reduce porewater 

concentrations of several toxic elements, including Al, As and V. Although some long term potential 

for partial remobilisation may remain, the results also highlight the potential benefits that may arise 



in BDRAs with lower concentrations of potentially problematic trace elements where residue 

undergoes organic matter and gypsum amendment. The effectiveness of the treatment was found 

to be relatively insensitive to both the amounts of gypsum or red mud present, making this approach 

easy to administer. At Ajka, up to 1 million m3 red mud slurry was released with an estimated solids 

content of ~8% (w/w) and density of ~1.20 g ml-1 (Szépvölgyi 2011) this equates to approximately 

100,000 t red mud. Using the ~2:1 red mud to gypsum ratio (i.e. 9% red mud + 4% gypsum) used in 

many of our experiments, we calculate that around 50,000 t of gypsum would be required to treat of 

all the released material (cf. ~23,500 t gypsum was added to rivers following the spill; Rédey 2012). 

However, lower gypsum dosing ratios were also affective in our experiments (up to ~8:1 red mud: 

gypsum) and many thinner red mud deposits may require no treatment if the intrinsic pH buffering 

capacity of the soil is not exceeded. Also, much of the red mud released was transported out of the 

system by rivers and not deposited on land (Mayes et al. 2011); therefore, in reality much lower 

amounts of gypsum may actually be required (~5-10,000 t) to treat red mud / soil mixtures. There is 

also the potential advantage of preventing dust formation by ploughing in the gypsum during 

application. However, caution is also required when drawing conclusions at the field scale from 

laboratory experiments, as for example, the ability to achieve large scale homogenous mixing may 

be difficult, reducing the effectiveness of treatment.  

Although addition of gypsum to soils can improve soil structure (e.g. by increasing hydraulic 

conductivity; Chen and Dick 2011), increased salinity (TDS) is the major disadvantage associated with 

gypsum addition. Indeed, for larger gypsum loadings, these salinity increases persisted for over 25 

pore water exchanges (as did the beneficial effects). Increased soil salinity can cause damage to 

plant growth and soil microbes (Ruyters et al. 2011), therefore, gypsum addition should be carefully 

limited to that required to produce pH values between 8.5 and 9 in affected soils. Long terms trails 

of plant germination, and trace metal uptake would be a useful extension to this work to determine 

the effects of gypsum addition to red mud affected soils on plant growth. Alternate treatments such 

as soil washing and increasing dilution (of the red mud) may also significantly reduce the risk of trace 



metal leaching, without the associated risk of increased salinity due to gypsum addition; however, 

these methods are likely to be expensive and slower to administer.  
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Table 1. Summary of red mud and soil characterisation data collected from the materials used in this 
study (* data from Law et al. 2010; Thorpe et al. 2012; Wallace et al. 2012). 

 Red Mud H1 H2 H3 E1* 

pH 13.1 7.2 6.7 7.7 5.5 

Dominant 
minerals  

hematite 
cancrinite 
calcite  
magnetite  
hydrogarnet 
boehmite 
gibbsite  

quartz 
albite 
microcline 
chlorite 
muscovite 

quartz 
albite 
microcline 
chlorite 
muscovite 

quartz 
albite 
microcline 
chlorite 
muscovite 

quartz 
albite 
microcline 
chlorite 
muscovite 

Corg (% w/w) 0.2 0.74 4.15 1.14 0.60 

SSABET (m
2 g-1) 14.0 ±0.1 0.94 ±0.01 1.8 ±0.2 2.6 ±0.01 3.4 ±0.6 

Munsell™ soil 
colour  

dark red 
(10R 3/6) 

light olive 
brown  
(2.5Y 5/6) 

dark brown 
(7.5Y 3/2) 

very dark grey 
(10Y 3/1) 

reddish brown 
(2.5YR 4/8) 

Texture clay 
(100% clay) 

sandy loam 
(70% sand, 
30% silt and 
0% clay) 

clay loam 
(65% sand, 
28% silt and 
7% clay) 

clay loam 
(69% sand, 
24% silt and 
7% clay) 

sandy loam 
(52% sand, 
43% silt and 
5% clay) 

 



Table 2. Concentrations of selected elements present in the red mud sample and soil samples. Soils 
H1, H2 and H3 were collected in Western Hungary. Soil E1 was collected in North Western England 
(*data from Law et al., 2010).  

Major Elements  
(Weight %) 

Red Mud Soil H1 Soil H2 Soil H3 Soil E1* 

Si 6.0 42 38 34 35 
Al 4.2 1.1 1.7 2.4 5.8 
Fe 13.4 0.6 0.6 1.0 3.1 
K 0.04 0.4 0.5 0.7 2.7 
Na 3.0 0.3 0.3 0.4 1.0 
Mg 0.4 0.2 0.6 0.5 0.5 
Ti 3.1 0.2 0.2 0.3 0.4 
Ca 5.7 0.4 1.6 0.8 0.2 
Mn 0.2 0.04 0.02 0.03 0.1 
P 0.04 0.02 0.02 0.02 0.02 
S 0.1 0.002 0.01 0.01 - 
Ba 0.007 0.014 0.04 0.03 0.04 
Loss on Ignition 1.0 1.8 5.1 1.2 4.1 

Minor Elements 
(mg kg-1) 

     

As 196 2 11 8 - 
Ce 607 17 47 34 - 
Co 59 3 11 5 <10 
Cr 864 50 68 62 30 
Cu 104 2 12 6 <30 
Ga 26 4 10 6 - 
La 283 10 26 18 23 
Mo 15 1 1 1 - 
Ni 361 5 23 14 17 
Pb 215 9 25 12 42 
Sb 22 1 1 2 - 
Sr 318 47 78 94 58 
Th 98 2 6 4 - 
U 21 1 3 2 - 
V 1132 30 72 51 81 
W 17 <1 <1 <1 - 
Zn 162 21 52 26 51 
Zr 1223 88 122 102 251 

< denotes less than given level of detection 
- denotes not determined.  



 

Figure 1. Principal Component Analysis based on major and minor elemental abundance in the red 

mud and soil samples using data from background and red mud affected sites in the Torna and 

Marcal catchments. Note that the red mud data (‘Red Mud’) plots at the extreme right hand side 

with other source term materials (‘Source’); the soil samples used in this study all plot in a group on 

the left hand side with unaffected sites from the lower Marcal River and unaffected reference (‘REF’) 

samples (see text and Mayes et al. 2011, for detail). REE = rare earth elements 
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Figure 2. The effect of increasing red mud addition to three Hungarian soils on experimental pH, 
total dissolved solids (TDS) and dissolved organic carbon (DOC). Results are shown in both the 
absence (upper three panels) and presence (lower three panels) of 4% (w/w) gypsum addition.  
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Figure 3. The effect of increasing red mud addition to three Hungarian soils on experimental trace 
element concentrations. Results are shown in both the absence (upper four panels) and presence 
(lower four panels) of 4% (w/w) gypsum addition. 
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Figure 4. The effect of increasing gypsum addition to soil / red mud mixtures (9% red mud w/w) on 
experimental pH, total dissolved solids (TDS), dissolved organic carbon (DOC) and trace element 
concentrations.  
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Figure 5. Evolution of effluent pH, total dissolved solids (TDS), dissolved organic carbon (DOC) and 
aluminium concentrations in column experiments, containing soil / red mud mixtures (8% red mud 
w/w) both with and without gypsum addition (also 8% w/w).  
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Figure 6. Plots of trace element concentrations vs final pH in batch experiments containing soil / red 
mud mixtures (N.B. highest pH and trace element concentrations were observed in experiments with 
highest red mud loadings), both with and without gypsum addition (4% w/w).  
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APPENDIX A  

Table A1. Data from duplicate batch experiments preformed using soils H1-3. The mean value and 
the range of duplicates are quoted in bold italics.  

9% red mud  addition 

 pH TDS  
(mg L-1) 

DOC 
(mg L-1) 

As 
(μg L-1) 

V 
(μg L-1) 

Mo 
(μg L-1) 

Al 
(μg L-1) 

Soil 
H1 

9.0, 9.6 

9.3 0.3 

998, 991 

994 4 

157, 99 

128 29 

62.7, 62.6 

62.7 0.1 

161, 157 

159 2.0 

48.8, 48.2 

48.5 0.3 

1161, 930 

1045 116 

Soil 
H2 

7.9, 8.1 

8.0 0.1 

1253, 1252 

1252 1 

143, 131 

137 6 

6.7, 6.6 

6.6 0.1 

31, 33 

32 1.1 

78.6, 78.0 

78.3 0.3 

<200, <200 
- 

Soil 
H3 

9.2, 9.5 

9.4 0.15 

952, 960 

956 4 

157, 99 

128 29 

88.0, 87.0 

87.5 0.1 

189, 206 

198 8.4 

95, 100 

97.7 2.4 

328, 489 

408 81 

9% red mud + 4% gypsum addition 

Soil 
H1 

7.6, 7.9 

7.8 0.15 

2703, 26471 

2675 28 

39, 40 

40 1 

7.3, 7.3 

7.3 0 

19.2, 18.6 

18.9 0.3 

56.0, 59.8 

57.9 1.9 

<200, <200 
- 

Soil 
H2 

7.7, 7.5 

7.6 0.1 

2945, 2933 

2939 6 

75, 73  

74 1 

<0.5, <0.5 
- 

7.4, 7.6 

7.5 0.1 

27.1, 29.6 

28.3 1.3 

<200, <200 
- 

Soil 
H3 

8.1, 8.3 

8.2 0.1 

2826, 2585 

2706 121 

11, 12 

12 0.5 

5.5, 5.5 

5.5 0 

13.2, 14.4 

13.8 0.6 

57.9, 61.1 

59.5 1.6 

<200, <200 
- 

< = less than given limit of detection 
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