Supporting information

2	Coprecipitation of ¹⁴ C and Sr with carbonate
3	precipitates: The importance of
4	recrystallization pathways
5	
6	David J. Hodkin [†] , Douglas I. Stewart [‡] , James T. Graham [*] , Ian T. Burke ^{†*}
7	[†] School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
8	*Corresponding Author's E-mail: <u>i.t.burke@see.leeds.ac.uk</u> ; Phone: +44 113 3437532; Fax: +44 113
9	3435259
10	⁺ School of Civil Engineering, University of Leeds
11	*National Nuclear Laboratory, Sellafield, Cumbria
12	
13	

Figure S1 Stacked XRD traces displaying key mineral phases throughout the [Ca]10:[CO3]1 experiment (C=Calcite,
 P=Portlandite)

19 S.I. Section 2: Complete closed system data

21 Figure S2 Data from the closed system experiment series potted alongside model data computed in PHREEQC

24 S.I. Section 3: Data tables

Table S1 Combined data from the [Ca]10:[C03]1 experiment

Tuble 51 CO	indineu u	atu ji om		0.[005]1	елрегине	nı											
t	рН		Ca		Na		Sr		Sr	Activity		14C		Sr		TIC	
(Hrs)		2σ	(mM)	2σ	(mM)	2σ	(ppm)	2σ	(mM)	(Bq)	2σ	C/C0	2σ	C/C0	2σ	(mM)	2σ
0.0083			4.14	0.91	10.82	0.81	9.64	0.52	0.01	78.33	22.90	0.78	0.18	0.96	0.03	0.41	0.54
0.025	12.21	0.04	4.79	0.57	10.87	0.85	9.47	0.70	0.01	39.43	18.07	0.39	0.10	0.95	0.04	0.24	0.34
0.13	12.22	0.07	5.86	0.30	10.91	0.80	9.40	0.59	0.01	12.04	10.22	0.12	0.09	0.94	0.03	0.28	0.32
0.83	12.25	0.04	6.87	0.62	10.97	0.89	9.37	0.70	0.01	0.27	0.16	0.00	0.00	0.94	0.04	0.20	0.22
6	12.21	0.07	5.57	0.98	11.05	0.90	9.33	0.75	0.01	8.13	4.82	0.08	0.03	0.93	0.05	0.28	0.33
24	11.98	0.10	1.17	1.19	10.98	1.05	8.55	1.26	0.01	8.69	4.98	0.09	0.04	0.85	0.10	0.39	0.29
48	11.52	0.32	0.01	0.00	11.09	0.84	0.14	0.04	0.00	41.63	9.22	0.42	0.05	0.01	0.00	4.48	1.05
72	9.71	0.28	0.01	0.00	11.13	0.75	0.15	0.03	0.00	46.00	7.60	0.46	0.06	0.01	0.00	9.19	1.09
198	8.99	0.00	0.02	0.00	11.72	0.60	0.36	0.02	0.00	18.00	8.35	0.18	0.07	0.04	0.00	11.78	0.56

Table S2 Combined data from the [Ca]10:[CO3]5 experiment

		···] ·				-											
t	pН		Ca		Na		Sr		Sr	Activity		14C		Sr		TIC	
(Hrs)		2σ	(mM)	2σ	(mM)	2σ	(ppm)	2σ	(mM)	(Bq)	2σ	C/C0	2σ	C/C0	2σ	(mM)	2σ
0.0083			1.41	0.11	19.82	1.33	9.58	0.42	0.01	88.15	10.87	0.88	0.09	0.96	0.03	3.84	0.42
0.025	12.09	0.07	1.09	0.15	19.62	1.35	4.47	0.27	0.01	41.69	9.87	0.42	0.12	0.45	0.03	1.25	0.88
0.13	12.19	0.05	1.72	0.21	19.92	1.22	2.81	0.23	0.00	9.70	10.87	0.10	0.09	0.28	0.02	0.31	0.34
0.83	12.27	0.01	3.14	0.40	19.58	1.78	2.78	0.27	0.00	10.48	0.79	0.10	0.01	0.28	0.02	0.20	0.29
6	12.20	0.01	1.74	0.27	19.60	2.17	2.73	0.27	0.00	10.20	0.41	0.10	0.00	0.27	0.03	0.23	0.31
24	11.93	0.03	0.02	0.00	19.88	2.51	0.62	0.04	0.00	14.39	9.16	0.14	0.08	0.06	0.00	2.97	0.64
48	11.40	0.17	0.01	0.00	20.25	2.15	0.26	0.04	0.00	34.71	9.63	0.35	0.08	0.03	0.00	8.41	1.02
72	10.07	0.12	0.01	0.00	20.13	2.20	0.27	0.03	0.00	43.13	1.39	0.43	0.01	0.03	0.00	14.18	0.80
198	9.24	0.07	0.02	0.00	21.61	1.53	0.52	0.01	0.00	29.10	3.22	0.29	0.03	0.05	0.00	19.99	0.51
198	9.24	0.07	0.02	0.00	21.01	1.53	0.52	0.01	0.00	29.10	3.22	0.29	0.03	0.05	0.00	19.99	

Table S3 Combined data from the [Ca]10:[CO3]10 experiment

14010 00 00	momeau	aca ji om		0.[000]10	o experim	Chit											
t	pН		Ca		Na		Sr		Sr	Activity		14C		Sr		TIC	
(Hrs)		2σ	(mM)	2σ	(mM)	2σ	(ppm)	2σ	(mM)	(Bq)	2σ	C/C0	2σ	C/C0	2σ	(mM)	2σ
0.0083			1.15	0.24	36.21	11.90	7.99	2.18	0.01	87.07	11.40	0.87	0.09	0.80	0.20	7.89	2.64
0.025	12.20	0.14	0.44	0.45	35.96	11.90	2.35	2.53	0.00	63.53	10.72	0.64	0.09	0.24	0.25	6.99	4.21
0.13	12.20	0.06	0.08	0.02	33.31	9.50	0.35	0.38	0.00	38.45	13.15	0.38	0.11	0.03	0.04	4.78	0.46
0.83	12.21	0.07	0.03	0.01	33.24	9.24	0.17	0.16	0.00	32.94	6.11	0.33	0.05	0.02	0.02	3.88	0.72
6	12.16	0.07	0.02	0.01	33.34	9.49	0.26	0.02	0.00	33.62	4.96	0.34	0.04	0.03	0.00	4.98	0.33
24	12.04	0.17	0.01	0.00	33.95	9.88	0.28	0.08	0.00	35.41	15.71	0.35	0.13	0.03	0.01	9.29	1.04
48	11.73	0.16	0.01	0.02	32.83	52.96	0.26	0.40	0.00	46.34	14.19	0.46	0.12	0.03	0.04	13.83	4.57
72	10.91	0.33	0.01	0.00	35.05	10.89	0.22	0.05	0.00	45.16	16.18	0.45	0.13	0.02	0.00	19.81	1.79
198	9.37	0.09	0.03	0.03	35.71	10.06	0.29	0.06	0.00	45.83	13.89	0.46	0.12	0.03	0.01	24.39	9.05

Table S4 Combined data from the [Ca]10:[CO3]100 experiment

t	pН		Ca		Na		Sr		Sr	Activity		14C		Sr		TIC	
(Hrs)	-	2σ	(mM)	2σ	(mM)	2σ	(ppm)	2σ	(mM)	(Bq)	2σ	C/C0	2σ	C/C0	2σ	(mM)	2σ
0.0083			1.06	0.21	182.88	22.23	9.09	1.11	0.01	98.76	8.34	0.99	0.07	0.91	0.09	87.04	3.79
0.025	12.07	0.07	0.79	0.04	184.05	14.86	3.56	0.30	0.00	90.49	2.90	0.90	0.02	0.36	0.02	88.17	0.26
0.13	12.12	0.03	0.04	0.01	184.52	18.05	0.45	0.06	0.00	84.13	3.56	0.84	0.03	0.04	0.01	85.41	1.85
0.83	12.12	0.04	0.02	0.00	185.77	8.25	0.23	0.01	0.00	86.92	11.91	0.87	0.10	0.02	0.00	83.11	3.12
6	12.03	0.08	0.02	0.00	183.93	14.00	0.24	0.01	0.00	91.73	6.38	0.92	0.05	0.02	0.00	81.83	6.38
24	11.92	0.06	0.01	0.00	181.42	12.31	0.19	0.01	0.00	90.14	5.56	0.90	0.05	0.02	0.00	89.25	3.71
48	11.50	0.03	0.01	0.00	186.11	12.71	0.19	0.01	0.00	87.93	7.44	0.88	0.06	0.02	0.00	96.53	6.48
72	10.85	0.03	0.01	0.00	185.80	12.62	0.18	0.01	0.00	85.16	1.93	0.85	0.02	0.02	0.00	102.30	4.57
198	10.08	0.12	0.01	0.00	193.12	14.29	0.20	0.02	0.00	94.92	0.77	0.95	0.01	0.02	0.00	120.03	2.44

```
38 S.I. Section 4: Full text PHREEQC input script
```

```
39
     # -----Nancollas and Reddy Calcite rate block-----
40
    RATES
41
    Calcite
42
       -start
43
       10 si cc = si("Calcite")
44
       20 if (m <= 0 and si cc < 0) then goto 200
45
        30 \text{ rate} = 0.576 * 118.2 * 5.4 * (3.6e-9 - act("Ca+2") * act("C03-2"))
       80 moles = rate * time
46
47
       140 if (moles > m) then moles = m
48
       150 if (moles \geq = 0) then goto 200
49
       160 \text{ temp} = \text{tot}("Ca")
50
       170 \text{ mc} = \text{tot}("C(4)")
51
       180 if mc < temp then temp = mc
52
       190 if -moles > temp then moles = -temp
53
       200 save moles
54
       -end
55
    # -----Johannsen 1999 Ca(OH)2 rate block-----Johannsen 1999 Ca(OH)2
56
    Ca (OH) 2
57
           -start
58
           1 si caoh = si("Ca(OH)2")
           20 if (m <= 0 and si caoh < 0) then goto 200
59
60
           30 \text{ SA} = 4.5 \text{ * m/m0}
61
           100 rate = 2.1 * SA * (4.76e-6 - act("Ca+2") * act("OH-")^2)
           110 moles = rate * time
62
           200 SAVE moles
63
64
           -end
65
    # -----Empirical Linear CO2 in-gassing-----Empirical Linear CO2
66
    CO2 (g)
67
           -start
            1 si co2 = si("CO2(g)")
68
69
            2 \text{ PCO2} = 7.2 \text{e} - 5 \# 1/6 \text{ atm}
70
            3 \text{ CO2eq} = \text{PCO2} * 0.032
71
            4 \text{ SA} = 56 \text{ #cm}2
72
            20 if (m <= 0 and si co2 < -3.4) then goto 200
73
            25 rate = 5.4e-4 * CO2eq - 5.4e-4 * (MOL("H2CO3")/10)
74
            26 \text{ rate} = \text{rate} * SA
75
            30 moles = rate * TIME
76
            200 SAVE moles
77
           -end
78
    INCREMENTAL REACTIONS TRUE
79
    #SOLID SOLUTIONS 1
80
    #CaSrCO3
81
           -comp Calcite 0 #1
    #
82
     #
           -comp strontianite 0 #0.00107
83
    #
           -distribution coefficients 0.057 0.057 0.015 0.0
84
    #-----Starting solution 100ml 0.01M NaOH, 1ppm SrCl2 & 1mmol
    Na2CO3 -----
85
86
    solution 1 # pure water
87
    temp 20.0
88
    рН 12.2
89
    water 1 kg
90
    units mmol/L
91
    Na 3 charge
92
    C(4) 1
93
    Sr 0.114
94
    Cl 0.228
95
96
    KINETICS
97
    CO2 (g)
```

98 -m0 1 99 Ca (OH) 2 100 -m0 0.00918 101 Calcite -m0 102 0 103 -parms 50 0.6 104 -cvode TRUE 105 #-steps 259200 in 432 steps 106 #-steps 3000 in 100 steps 107 #-steps 0.5 1.5 8 50 360 1440 2880 4320 minutes 108 -steps 0.5 1 6.5 42 310 1080 1440 1440 7680 minutes 109 SELECTED OUTPUT 110 -file Complete Solution.xls 111 -reset false 112 USER PUNCH 113 -headings t pH Ca(mmol) Na(mmol) TIC SrC/C0 nCalcite 14C/C0 114 -start 115 10 PUNCH total time/60/60 116 20 PUNCH -LA("H+") 117 30 PUNCH TOT("Ca")*1000 118 40 PUNCH TOT("Na")*1000 119 50 PUNCH TOT("C(4)")*1000 120 60 PUNCH 1-((KIN("Calcite")*1000)*0.00108/0.0114) 121 70 PUNCH KIN("Calcite") 122 80 PUNCH act("CO2")*1000 123 -end 124 USER GRAPH 1 125 -axis scale x axis 0.001 auto auto auto logscale 126 -axis scale y axis auto -axis titles "time (h)" "[Ca] (mmol)" 127 128 -initial solutions false 129 -connect simulations true 130 -start 131 10 GRAPH X total time/3600 132 20 GRAPH Y TOT("Ca")*1000 133 USER GRAPH 2 134 -axis_scale x_axis 0.001 auto auto logscale -axis_scale y_axis auto -axis_titles "time (h)" "pH" 135 136 137 -initial solutions false 138 -connect simulations true 139 -start 140 10 GRAPH X total time/3600 141 20 GRAPH Y -LA("H+") 142 END 143

145 S.I. Section 5: Ca(OH)₂ dissolution rate

Surface area of the Ca(OH)₂ starting material was calculated from triplicate BET analyses using a Micromeritics Gemini VII 2390a instrument. A sample size of 0.479 g was used and dried overnight at a temperature of 105°C while being flushed with nitrogen gas. The sample was then re-weighed to account for any moisture loss. A dead-space volume measurement was taken using helium which was then removed via vacuum and triplicate measurements were taken, using nitrogen as an absorbent at -196 °C. Results are presented in Table S1.

	BET surface area (m ² g ⁻¹)	BET Constant (C)	r ²
а	$\textbf{4.2236} \pm \textbf{0.043}$	274.1	0.9996
b	$\textbf{4.1449} \pm \textbf{0.041}$	211.9	0.9996
С	4.1594 ± 0.043	254.2	0.9996
Average	$\textbf{4.176} \pm \textbf{0.068}$	246.73	0.9996

152 Table S5 BET analysis of the Ca(OH)2 starting material

In the paper the dissolution rate of calcium hydroxide was modelled using a formula from Johannsen and Rademacher¹. The output from this model was compared to XRD data obtained for the % calcite in the solid phase, converted to [Ca] by multiplying the % by the expected final concentration/100. As well as conductivity data obtained from dissolving 10 mmol of Ca(OH)₂ in 100ml of 0.01M NaOH. The conductivity data was converted to % dissolved by dividing by the stable conductivity achieved after 30 minutes and multiplying by 100. This was then converted to [Ca] by multiplying by the expected final concentration/100.

Figure S3 Comparison of published Ca(OH)₂ dissolution rate to experimental data. XRD data obtained through Rietveld
 refinement on powders generated during the experimental series, and conductivity data obtained during separate
 triplicate experiments.

164 S.I. Section 6: Calcite Surface area

165 The surface area of neo-formed calcite could not be derived from BET analysis due to low precipitate yields as well as the presence of $Ca(OH)_2$ alongside the early formed precipitate. 166 Surface areas were instead calculated from the average crystal dimensions from SEM images 167 using an assumed calcite density of 2.7 g cm⁻³ and assuming a cubic shape for rhombic crystals 168 169 and a cylindrical shape for prismatic crystals. The rhombic crystals yielded a surface area of 5.37 m² g⁻¹ while the prismatic crystals displayed a significantly larger surface area of 76.19 m² g⁻¹. If 170 it assumed that by the end of testing 10 mmol of Ca forms CaCO₃ (formula weight 100 g mol⁻¹) 171 then the rhombic end-point population would have an expected surface area of: 172

173
$$SA = 5.37 \cdot (0.01 \cdot 100) = 5.37 \, m^2 \, L^{-1}$$
 (S 1)

The initial rhombic calcite has a larger specific surface area but smaller mass so the overall
surface area is minimal (the initial concentration of seed crystals in the Ca(OH)₂ was calculated
at 8.16% of the 1 mmol Ca(OH)₂):

177
$$SA = 76.19 \cdot (0.01 \cdot 100) \cdot 0.0816 = 6.2 \, m^2 \, L^{-1}$$
 (S 3)

Source	Crystal Length (µm)	Surface area (m ² g ⁻¹)	Morphology
2	4-20	0.7	Rhombic
3	<0.5	14-17	Nano-Rhombic
4	10	0.3	Prismatic
5	0.7	8.63	Prismatic
This study	0.41	5.2	Rhombic
This study	0.5	76	Prismatic

Table S6 Surface area and anistal sizes taken from literature values and SEM images 178

180 S.I. Section 7: CO₂ dissolution

CO₂ dissolution was determined to be the rate limiting step on the availability of TIC in solution 181 (Modelling Section). This process was modelled using a modified version of equation (S. 5) from 182 Noyes et al⁶. The forward component of this rate was adjusted to account for depletion of CO₂ in 183 184 the headspace of the reaction vessel. A P_{CO2} of 1/6 atm (7.2×10⁻⁶) was used which agrees with empirical observations of the in-gassing rate. The reverse component of (S. 5) only becomes 185 186 significant when appreciable $CO_{2(aq)}$ has accumulated in solution. Due to limitations in modelling 187 this component in PHREEQC this has been omitted from the model and the model was terminated prior the accumulation of $CO_{2(aq)}$. Thus (S. 5) can be rearranged to (S. 6) where $[CO_{2(aq)}]^{equilibrium}$ is 188 189 adjusted to that expected to be in equilibrium with 1/6 atmospheric $CO_{2(g)}$.

Figure S4 Experimental CO₂ data from the [Ca]10:[CO₃]1 experiment plotted against 3 model curves

Figure 4 displays the effect of changing the reverse component on the final pH. The "Forward Model" (run without a reverse component) over predicts the drop in pH caused by CO_2 in-gassing. When the reverse component was included ("Forward + Reverse Model") the predicted pH drop was reduced and close to the experimental data. This was a slight overestimation however due to the use of [H₂CO₃] in the model rather than [CO₂(aq)] (PHREEQC does not contain a term for [CO₂(aq)]). The "Adjusted model" was run with $0.1x[H_2CO_3]$, this accounted for the under prediction in the Model.

201 S.I. Section 8: Sr distribution coefficients

202
$$D_{sr} = \frac{[Sr]/[Ca]_{ppt}}{[Sr]/[Ca]_{sol}}$$

203

204 *Table S7 Average strontium distribution coefficients for each triplicate series*

Experiment	Ca _{ppt}	Ca _{sol}	$\mathrm{Sr}_{\mathrm{ppt}}$	Sr _{sol}	D_{sr}
10_1	9.980	0.020	0.011	4.15×10-4	0.0508
10_5	9.984	0.016	0.011	5.93×10-4	0.0287
10_10	9.912	0.034	0.011	3.28×10-4	0.1120
10_100	9.988	0.012	0.011	2.25×10-4	0.0606
Average	9.966	0.020	0.011	3.90×10-4	0.0566

207 S.I. Section 9: Sellafield groundwater composition

Table S8 Concentration of selected Sellafield groundwater ions and the range of reported ¹⁴C and ⁹⁰Sr
 activities.⁷

GW species	Concentration
рН	7
Са	0.96 mM
HCO ₃	1.23 mM
Mg	0.19 mM
К	0.18 mM
Na	1.12 mM
Cl	1.40 mM
SO ₄	0.21 mM
Sr	1.40 μΜ
¹⁴ C	1-50 KBq L ⁻¹
⁹⁰ Sr	0.1-44 KBq L ⁻¹

210 S.I. Section 10: Costing information for reagents

211 Only Ca(OH)₂ will be required to run the proposed treatment scheme. TIC content in the 212 groundwater is sufficient and the addition of 840.3 g of Ca(OH)₂ per m³ to achieve a 10:1 Ca:CO₃ 213 molar ratio would yield an approximate pH of 11.6 which would be sufficient to minimize de-214 gassing of ¹⁴C. The amount of Ca(OH)₂ costed would be sufficient to produce a Ca:CO₃ molar ratio 215 of 10:1

 $\begin{array}{c} \textbf{216} \\ \textbf{217} \\ \textbf{217} \\ \textbf{217} \\ \hline \textbf{Reagent} \\ \textbf{Ca}(OH)_2 \\ \textbf{218} \end{array} \begin{array}{c} \textbf{Table S9 Costing information for the proposed treatment scheme. Prices quoted from Singleton Birch 01652} \\ \textbf{686000 (19/11/2015)} \\ \hline \textbf{Reagent} \\ \textbf{Amount require per m}^3 \\ \textbf{Cost per ton of reagent} \\ \textbf{Cost per m}^3 \text{ of groundwater} \\ \hline \textbf{Ca}(OH)_2 \\ \textbf{840.3 g} \\ \textbf{$260} \\ \textbf{$0.22} \end{array}$

220	Biblic	ography
221		
222 223	(1)	Johannsen, K.; Rademacher, S. Modelling the Kinetics of Calcium Hydroxide Dissolution in Water. <i>Acta Hydrochim. Hydrobiol.</i> 1999 , <i>27</i> (2), 72–78.
224		
225 226 227	(2)	Inskeep, W. P.; Bloom, P. R. An Evaluation of Rate Equations for Calcite Precipitation Kinetics at pCO2 Less than 0.01 Atm and pH Greater than 8. <i>Geochim. Cosmochim. Acta</i> 1985 , <i>49</i> (10), 2165–2180.
228		
229 230	(3)	Schultz, L. N.; Andersson, M. P.; Dalby, K. N.; Müter, D.; Okhrimenko, D. V; Fordsmand, H.; Stipp, S. L. S. High Surface Area Calcite. <i>J. Cryst. Growth</i> 2013 , <i>371</i> , 34–38.
231		
232 233	(4)	Nancollas, G. H.; Reddy, M. M. The Crystallization of Calcium Carbonate. II. Calcite Growth Mechanism. <i>J. Colloid Interface Sci.</i> 1971 , <i>37</i> (4), 824–830.
234		
235 236 237	(5)	Huang, Y. C.; Fowkes, F. M.; Lloyd, T. B.; Sanders, N. D. Adsorption of Calcium Ions from Calcium Chloride Solutions onto Calcium Carbonate Particles. <i>Langmuir</i> 1991 , <i>7</i> (8), 1742–1748.
238		
239 240 241	(6)	Noyes, R. M.; Rubin, M. B.; Bowers, P. G. Transport of Carbon Dioxide between the Gas Phase and Water under Well-Stirred Conditions: Rate Constants and Mass Accommodation Coefficients. <i>J. Phys. Chem.</i> 1996 , <i>100</i> (10), 4167–4172.
242		
243 244	(7)	Graham, J. ERT Trial Groundwater Analysis – Rounds 16 – 19. NNL Technical Memorandum LP06489/06/10/07.; 2013.
245		