SUPPLEMENTARY DATA

This material is available free of charge via the internet at http://pubs.acs.org

DEREVATION OF THE INTERGRATED RATE EQUATION

With a rate equation of the form:

$$
\frac{d C}{d t}=-k C A
$$

Where the rate constant k is a function of pH and has the units $\mathrm{m}^{-2} \mathrm{~s}^{-1}$. If the reactive surface area is lost due to the surface reaction of $\mathrm{Cr}(\mathrm{VI})$ with $\mathrm{Fe}(\mathrm{O})$, the surface area can be described by an equation such as:

$$
A=A_{0}-\left(C_{0}-C\right) V / B
$$

Where A_{0} is the initial reactive surface area $\left(\mathrm{m}^{2}\right), B$ is the specific capacity of the iron surface to reduce $\mathrm{Cr}(\mathrm{VI})\left(\mathrm{mM} \cdot \mathrm{m}^{-2}\right)$, and V is the volume of liquid in contact with the iron. Therefore:

$$
\frac{d C}{d t}=-k \frac{C_{0} V}{B} C\left(\frac{A_{0} B}{C_{0} V}-1+\frac{C}{C_{0}}\right)
$$

Defining the capacity ratio for the system as $r=A_{0} B / C_{0} V$

$$
\frac{d C}{d t}=-k \frac{A_{0}}{r} C\left(r-1+\frac{C}{C_{0}}\right)
$$

Using substitutions $\mathrm{D}=(\mathrm{r}-1) \mathrm{C}_{0}$ and $\mathrm{E}=\mathrm{kA}_{0} /\left(\mathrm{r} . \mathrm{C}_{0}\right)$ the equation simplifies to:

$$
\frac{d C}{d t}=-E C(D+C)
$$

Which, after variable separation can be integrated by use of partial fractions, provided $\mathrm{D} \neq$ 0 :

$$
\int \frac{d C}{C}-\int \frac{d C}{(D+C)}=-E D \int d t
$$

Integration yields:

$$
\operatorname{Ln} C-\operatorname{Ln}(D+C)=-E D t+\text { constant }
$$

When $\mathrm{t}=0, \mathrm{C}=\mathrm{C}_{0}$:

$$
\frac{C}{D+C}=\frac{C_{0}}{D+C_{0}} e^{-E D t}
$$

Rearranging for C :

$$
C=\frac{D\left(\frac{C_{0}}{D+C_{0}}\right) e^{-E D t}}{1-\left(\frac{C_{0}}{D+C_{0}}\right) e^{-E D t}}
$$

Substituting for D:

$$
\frac{C}{C_{0}}=\frac{(r-1) e^{-E D t}}{r-e^{-E D t}}
$$

Where $\mathrm{ED}=\mathrm{kA}_{0}(\mathrm{r}-1) / \mathrm{r}$:

$$
\frac{C}{C_{0}}=\frac{(r-1) e^{-k A_{0}\left(\frac{r-1}{r}\right) t}}{r-e^{-k A_{0}\left(\frac{r-1}{r}\right) t}}
$$

Figure $\mathrm{S} 1:[\mathrm{Cr}(\mathrm{VI})]$ vs. time for $(\mathrm{A}) 1 \mathrm{mmol}^{-1} \mathrm{~L}^{-1}$ chromate solution $\mathrm{pH} 12.0 \pm 0.1$ and (B) $1 \mathrm{mmol} . \mathrm{L}^{-1}$ COPR leachate $\mathrm{pH} 11.9 \pm 0.2$.

Figure S2: $[\mathrm{Cr}(\mathrm{VI})]$ vs. time for tests with $100 \mathrm{~g} . \mathrm{L}^{-1} \mathrm{ZVI}$ in COPR leachate containing $1 \mathrm{mmol} . \mathrm{L}^{-1}$ of $\mathrm{Cr}(\mathrm{VI})$ where the initial pH has been buffered to different values.

