Supporting Information for:

Speciation of arsenic, chromium and vanadium in red mud samples from the Ajka spill site, Hungary.

Ian T. Burke^{1*}, William M. Mayes², Caroline L. Peacock¹, Andrew P. Brown³, Adam P. Jarvis⁴ and

Katalin Gruiz⁵.

¹ Earth Surface Science Institute, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK.

² Centre for Environmental and Marine Sciences, University of Hull, Scarborough, YO11 3AZ, UK.

³ School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT, UK.

⁴ School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

⁴ Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics. 1111 Budapest, St. Gellért sq. 4. Hungary.

* Corresponding Author's E-mail: i.burke@see.leeds.ac.uk

This section consists of 11 pages, 3 tables, and 5 figures.

Prepared for Environmental Science and Technology, 07 Feb. 12.

Section 1. XAS analysis.

Approximately 100mg samples of dried red mud samples K1a and K1c and the precipitate recovered from red mud leachate experiments were prepared for XAS analysis by vigorous homogenisation in an acid washed agate mortar and pestle and pressed into 8 mm pellets held in Kapton[™] tape. Standard materials were also prepared as pressed pellets using cellulose as a diluent to reduce chemical thickness (to achieve an edge step between 0.5 and 1.5 in transmission mode, see below) and held in Kapton[™] tape. Solutions of sodium arsenate and sodium arsenite were prepared at 1000 mg.L⁻¹ and held in polythene bags for analysis. A sodium vanadate solution was prepared in 0.1 mol.L⁻¹ NaOH, also at 1000 mg.L⁻¹, and held in polythene bags as above.

As, Cr and V K-edge spectra were collected on beamline 118 at the Diamond Light Source operating at 3 GeV with a typical current of 200 mA, using a nitrogen cooled Si(111) double crystal monochromator and focussing optics. A pair of plane mirrors was used to reduce the harmonic content of the beam and Kirkpatrick-Baez mirrors were used to produce a relatively unfocused beam (approximately 0.5mm diameter at the sample). For standards prepared as pressed pellets, K-edge spectra were collected in transmission mode at room temperature (~295 °K). For samples and solutions, data were collected in fluorescence mode using a 9 element solid state Ge detector at room temperature. As K-edge spectra were found to be strongly affected by beam damage presenting as an apparent change in As speciation that increased in magnitude with increased exposure to the beam. To mitigate this effect, only single As K-edge EXAFS spectra where collected (~25mins) from a spot within the sample and the sample stage automatically moved to expose an unaffected part of the sample before subsequent scans.

Cr K-edge spectra for the 5% Cr³⁺-substituted hematite sample were collected at the SuperXAS beamline of the Swiss Light Source operating at 2.4 GeV with a typical current of 400 mA. Analysis was in transmission mode using a water cooled Si(111) double crystal monochromator and vertically collimating and Toroidal focusing mirrors.

Multiple scans were then averaged to improve the signal to noise ratio using Athena version 0.8.061 (Ravel and Newville, 2005). For XANES spectra absorption was also normalised in Athena over the full data range and plotted from approximately -15 eV to +30 eV relative to the edge

2

position with no correction required for drift in E_0 . Cr and V data was calibrated using E_0 measured from thin metal foils, and As data was calibrated using the white line position measured from the sodium arsenate standard. The V pre-edge peak energy was determined by calculation of the area normalised centroid energy position following the method of Chaurand et al. (2007).

Section 2 As K-edge EXAFS Analysis.

EXAFS data was background subtracted using PySpline v1.1 (Tenderholt et al. 2007) and analysed in DLexcurv v1.0 (Tomic et al., 2005) using full curved wave theory (Gurman et al., 1984). Phaseshifts were derived from ab initio calculations using Hedin-Lundqvist potentials and von-Barth ground states (Binsted, 1998). Multiple scattering was allowed for as coded in DLexcurv (Binsted, 1998; Tomic et al., 2005). Multiple scattering calculations require specification of the full three dimensional structure of the As coordination environment (i.e., bond angles in addition to bond lengths). This was done using hypothetical model clusters with C₁ symmetry (SI Figure SI 1). The spectra for each sample were then fit by refining each model cluster, and the best fit evaluated using the EXAFS Rfactor (Binsted et al., 1992), the EXAFS Fit Index (as coded in Binsted et al., 1996) and the reduced Chi² values (as coded in EXCURV98 (Binsted, 1998 and references therein)). Specifically, reduced Chi² values were used to evaluate the fits of each experimental spectrum to various single shell (involving only nearest neighbour oxygens) vs. multiple shell (involving nearest neighbour oxygens and next-nearest neighbour AI/Fe) model clusters. In this way the statistical significance of invoking Al/Fe backscatters was determined. Next-nearest neighbour Al/Fe shells were only included if the reduced Chi^2 was improved by \geq 10%, compared to a single shell (oxygens only) cluster (Peacock, 2009). It should be noted that, in DLexcurv, the absolute value of reduced Chi² is not accurate (as DLexcurv does not require actual experimental statistical errors). Rather, reduced Chi² is used as a relative guide where a reduction or minimum indicates an improved fit. Fitting involved the refinement of an energy correction Ef (the Fermi Energy; which for final fits typically varied between \sim -6.5 and -7.5), and the absorber-scatterer distance and the Debye-Waller factor for each shell. The amplitude factor (or AFAC in DLexcurv V1.0) was retained as the default of 1 throughout. During fitting the number of independent data points was always greater than the number of fitted parameters (in DLexcurv these are N_{ind} and N_{pars}, respectively). N_{ind} was determined using Stern's rule

3

(Stern, 1993) as $2\Delta k\Delta R/\pi + 2$ (Booth and Hu, 2009) where Δk and ΔR are the range in k- and R-space actually fitted. All spectra were fit in k-space and no Fourier filtering was performed.

Fourier transforms of the EXAFS spectra were used to obtain an approximate radial distribution function around the central As atom (the absorber atom); the peaks of the Fourier transform can be related to "shells" of surrounding backscattering ions characterised by atom type, number of atoms, absorber-scatterer distance, and the Debye-Waller factor (\pm 25%), $2\sigma^2$. Atomic distances calculated by DLexcurv have an error of approximately \pm 0.02 and \pm 0.05 Å in the first and outer shells respectively (Burke et al., 2005). Debye-Waller factors are typically 0.002 – 0.02 $2\sigma^2$ for the first shell and 0.02 – 0.04 $2\sigma^2$ for the outer shells (Binsted, 1998).

Element	K1a	K1b	K1c	K1 Mean	Std Dev
Al	65804	82677	75319	74600	8460
As	89	37	110	79	38
Au	24.8	20.8	25.8	23.8	2.7
Ва	80.2	64.3	67.2	70.6	8.5
Be	9.4	8.9	8.9	9.1	0.3
Ca	53765	50482	55708	53318	2641
Cd	5.9	2.9	3.3	4.0	1.6
Ce	426	409	378	405	25
Со	112	87	92	97	13
Cr	934	733	766	811	108
Cu	64.3	51.1	52.6	56.0	7.3
Er	22.2	17.6	17.0	19.0	2.8
Eu	8.5	6.2	5.3	6.7	1.6
Fe	213590	197528	214400	208506	9516
Ga	78.5	82.3	77.0	79.3	2.7
Gd	81 5	68.8	71 7	74.0	67
Ge	26.3	28.0	26.2	26.8	1.0
нf	4 2	85	8.2	7.0	24
нf	1/1 8	13.9	1/1 0	14.3	0.5
Ho	10.2	9.0	14.0 8 7	93	0.5
ĸ	796	730	685	727	56
	102	1/1	124	140	20
	576	141 50 J	569	14 <i>5</i> 57 5	07
	00	70.2	05	57.5 0 7	0.7
Lu	0.0 21E0	7.0	3.3	0.7	0.9 202
Mp	2022	2700	2020	2502	205 195
IVIII Mo	10.0	12.2	2549	2300	425
No	10.0	10.5	27157	14.4	3.Z 2565
Nd Nb	42220	40372	3/15/	39918	2505
	97.2	/0.5	/9./	84.5	11.2
INU NI	107	122	112	135	29
INI	388	289	280	321	58
P	1262	1035	1086	1128	119
PD D=	179	140	152	157	20
Pr	121	102	97	107	13
Pt	/8.6	58.6	/6./	/1.3	11.0
ĸu	44.5	30.7	29.7	35.0	8.3
S	2894	2886	2751	2844	81
SI	30012	29369	25543	28308	2416
Sm	37.5	26.1	24.2	29.3	1.2
Sr	2/3	240	244	252	18
le	1/.1	15.4	24.4	19.0	4.8
Ih 	127	129	129	128	1
Ti -	25878	24086	24040	24668	1048
Tm	9.8	9.1	8.8	9.2	0.5
U	369	314	333	339	28
V	963	860	897	907	52
Y	114	82	74	90	21
Yb	19.0	15.6	15.1	16.6	2.1
Zn	218	143	158	173	40
Zr	653	619	615	629	21

Table SI 1. Composition of major and minor elements in K1 red mud sample replicates (mg.kg⁻¹) determined byICP-OES/MS after total microwave assisted digestion in aqua regia-HF.

Table SI 2. Hydrochemical composition of red mud leachate collected at dyke breach location K1 on 1 st
December 2010 (0.45 μ m filtered; see Mayes et al., 2011 for details of analytical methods).

Determinand	K1 red mud leachate				
рН	13.1				
ORP (V)	0.023				
Temperature (°C)	3.6				
Selected ions / elements (mg L ⁻¹)					
Alkalinity (as OH)	1125.8				
Alkalinity (as CO_3^{2-})	2445.8				
Alkalinity (as HCO ₃)	1.4				
Al	659				
As	3.612				
В	0.900				
Ca	1.3				
Chloride	83				
Cr	0.049				
Cu	0.310				
Fe	<0.001				
Ga	2.340				
К	85				
Mg	0.001				
Мо	4.114				
Na	701				
Ni	0.036				
Pb	<0.001				
Si	0.668				
Sulphate	727				
V	5.709				

V < less than given limit of detection</p>

SI Table SI 3. Mineral saturation indexes based on the water composition determined at location K1 (SI Table SI 2). Results based on PHREEQC modelling using MINTEQ (Cr and V phases), Bothe and Brown, 1999 (Caarsenate hydrate phases) and WATEQ4F (all other phases).

Phase Species Sat. Index As phases Species Sat. Index Adularia KAISi ₃ O ₈ 2.61 Ca ₅ (AsO ₄) ₃ OH Ca ₅ (AsO ₄) ₃ OH -80.08 Al(OH) ₃ (a) Al(OH) ₃ 1.39 CaHASO ₄ .H ₂ O CaHASO ₄ .H ₂ O -28.08 Albite NaAlSi ₂ O ₈ 0.9 Carraristic CarHASO ₄ .H ₂ O -102.34	
Adularia KAlSi $_{3}O_{8}$ 2.61 Ca ₅ (AsO ₄)_{3}OH Ca ₅ (AsO ₄)_{3}OH -80.08 Al(OH)_{3}(a) Al(OH)_{3} 1.39 CaHASO ₄ .H ₂ O CaHASO ₄ .H ₂ O -28.08 Albite NaAlSi_{3}Oa 0.9 Formation Ca_2HASO_4.H ₂ O -102.24	
Al(OH)_3 (a)Al(OH)_3 1.39 CaHAsO_4.H_2OCaHAsO_4.H_2O -28.08 AlbitaNaAlSi.O. 0.9 Formaticity -28.04 -28.04	
Albite NaAlSi O_2 0.9 Expression O_2 -H. (AcO.), 9H. O. 102.24	
TIDILE INDRIDI308 U.J [FEITIDISLE Cd5D2[ASU4]4.3D2U -103.34	
Alunite KAl3(SO ₄)2(OH) ₆ 2.76 Guerinite Ca ₅ H ₂ (AsO ₄) ₄ .9H ₂ O -102.54	
Analcime NaAlSi ₂ O ₆ :H ₂ O 0.25 Claudetite As ₄ O ₆ -162.4	
Anorthite CaAl ₂ Si ₂ O ₈ 1.44 Ni ₃ (AsO ₄) ₂ :8H ₂ O Ni ₃ (AsO ₄) ₂ :8H ₂ O -32.1	
Aragonite CaCO ₃ 0.4 Orpiment As ₂ S ₃ -452.3	
Artinite MgCO ₃ :Mg(OH) ₂ :3H ₂ O -10.54 Realgar AsS -184.2	
Barite BaSO ₄ -0.98	
Basaluminite Al ₄ (OH)10SO ₄ 10.17 Cr phases	
Boehmite AlOOH 3.51 BaCrO ₄ BaCrO ₄ -3.20	
Brucite Mg(OH) ₂ -7.11 CaCrO ₄ CaCrO ₄ -10.6	
Calcite CaCO ₃ 0.56 Cr(OH) ₃ Cr(OH) ₃ -16.7	
Chlorite14A Mg ₅ Al ₂ Si ₃ O ₁₀ (OH) ₈ -8.49 Cr ₂ O ₃ Cr ₂ O ₃ -32.1	
Chlorite7A Mg ₅ Al ₂ Si ₃ O ₁₀ (OH) ₈ -12.07 CrCl ₂ CrCl ₂ -82.8	
Chrysotile Mg ₃ Si ₂ O ₅ (OH) ₄ -11.41 CrCl ₃ CrCl ₃ -80.3	
Clinoenstatite MgSiO ₃ -6.29 CrF ₃ CrF ₃ -60.7	
CuMetal Cu 0.46 CrMetal CrMetal -106.5	
Cuprite Cu ₂ O 3.48 CrO ₃ CrO ₃ -29.9	
Diaspore AlOOH 5.41 Li2CrO4 Li2CrO4 -23.32	
Diopside CaMgSi ₂ O ₆ -6.61 MgCr ₂ O ₄ MgCr ₂ O ₄ -27.7	
Dolomite CaMg(CO ₃) ₂ -1.85 MgCrO ₄ MgCrO ₄ -18.3	
Dolomite(d) CaMg(CO ₃) ₂ -2.50 Na ₂ Cr ₂ O ₇ Na ₂ Cr ₂ O ₇ -33.6	
Forsterite Mg ₂ SiO ₄ -13.60 Na ₂ CrO ₄ Na ₂ CrO ₄ -14.2	
Gibbsite AI(OH) ₃ 4.29 SrCrO ₄ SrCrO ₄ -10.51	
Halloysite $Al_2Si_2O_5(OH)_4$ 2.46	
Hausmannite Mn ₃ O ₄ -18.99 V phases	
Huntite CaMg ₃ (CO ₃) ₄ -11.05 Ca ₂ V ₂ O ₇ Ca ₂ V ₂ O ₇ -4.48	
Hydroxyapatite $Ca_5(PO_4)3OH$ -2.17 $Ca_3(VO_4)_2$ $Ca_3(VO_4)_2$ -5.82	
Kaolinite $Al_2Si_2O_5(OH)_4$ 7.79 Ca-vanadate $Ca_{0.5}VO_3$ -8.35	
Kmica KAl ₃ Si ₃ O ₁₀ (OH) ₂ 16.69 Mg ₂ V ₂ O ₇ Mg ₂ V ₂ O ₇ -11.09	
Laumontite CaAl ₂ Si ₄ O ₁₂ :4H ₂ O 4.11 Na ₃ VO ₄ Na ₃ VO ₄ -20.97	
Leonhardite Ca ₂ Al ₄ Si ₈ O ₂₄ :7H ₂ O 16.68 Na ₄ V ₂ O ₇ Na ₄ V ₂ O ₇ -12.82	
Magnesite MgCO ₃ -2.90 Na-vanadate NaVO ₃ -8.11	
$Ni(OH)_2$ $Ni(OH)_2$ -3.05 $V(OH)_3$ $V(OH)_3$ -36.12	
Phlogopite $KMg_3AlSi_3O_{10}(OH)_2$ -6.52 V_2O_3 V_2O_3 -34.5	
Plumbogummite PbAl ₃ (PO ₄) ₂ (OH) ₅ :H ₂ O 4.67 V ₂ O ₄ V ₂ O ₄ -20.9	
Prehnite $C_{a_2}A_{l_2}S_{l_3}O_{10}(OH)_2$ 2.29 V_2O_5 V_2O_5 -14.8	
Pyrophyllite $Al_2Si_4O_{10}(OH)_2$ 5.21 V_3O_5 V_3O_5 -89.0	
Sepiolite $Mg_2Si_3O7.SOH:3H_2O -9.08$ V_4O_7 V_4O_7 -111.0	
Sepiolite(d) $Mg_2Si_3O7.5OH:3H_2O$ -11.37 V_6O_{13} V_6O_{13} -103.6	
Strontianite $SrCO_3$ -1.40 VCl_2 VCl_2 -99.5	
Taic $Mg_3Si_4O_{10}(OH)_2$ -10.55 VCl_3 VCl_3 -100.5	
Tremolite $Ca_2Mg_5Sl_8O_2(OH)_2$ -18.35 VF_4 VF_4 -108.5	
Witherite BaCO ₃ -0.04 VMetal VMetal -131.9	
VO VO -62.3	
As prases VU(UH) ₂ VU(UH) ₂ -21.7	
AIASU $_4$: Π_2 U AIASU $_4$: Π_2 U -18.45 VU $_2$ LI VU $_2$ LI -34.5	
Arsenonice AS_4U_6 -162.6 VUCI VUCI -55.3	
$A_{2}U_{5}$ $A_{2}U_{5}$ -54.02 VUU_{2} VUU_{2} -62.1 $B_{2}(A_{5}O_{1})$ $B_{2}(A_{5}O_{2})$ QQA $VOSO$ $VOSO$ 40.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$Ca_{3}(-3) - 4_{1} + 7_{4} + 1_{2} - Ca_{3}(-3) - 4_{1} + 7_{4} + 1_{2} - 5_{1} - 2_{2} - 5_{1} - 5_$	
$Ca_{3}(OH)_{2}(ASO_{4})_{2}, 4H_{2}O$ $Ca_{3}(OH)_{2}(ASO_{4})_{2}, 4H_{2}O$ -62.73	

Figure SI 1. Clusters used to model As EXAFS data of (a) dried red mud samples K1a and K1c, and (b) the precipitate recovered from the red mud leachate experiments. As = arsenic; O = oxygen; Al = aluminium; Fe = iron.

Figure SI 2. High resolution bright field TEM image of fine grained hematite particles.

Figure SI 3. TEM image and EDX spectra from a larger plate like mineral (centre) containing a Na-Al-Si composition consistent with a cancrinite-like phase. V peaks were never found associated with particles with a similar composition. Cu peaks are from the support grid used to mount samples.

Figure SI 4. TEM image and EDX spectra from a larger plate like mineral containing Ca-Al-Si-Ti composition consistent with a hydrogarnet-like phase. V peaks were identified in EDS spectra from particles with a similar composition. Cu and C peaks are from the Cu-support grid and C-film used to mount samples.

Figure SI 5. Detailed comparison of the Cr K-edge XANES spectra collected from the K1a red mud sample (solid lines) and spectra collected from a 5 % Cr(III)-substituted hematite (top) and Cr2O3 (bottom) standards (dashed lines).

Supporting Information References

- N. Binsted, CLRC Daresbury Laboratory EXCURV98 program, CLRC Daresbury Laboratory, Warrington, UK, 1998.
- N. Binsted, R.W. Strange, S.S. Hasnain, Constrained and Restrained Refinement in Exafs Data-Analysis with Curved Wave Theory, Biochemistry, 31 (1992) 12117-12125.
- Booth, C. H.; Hu, Y. J., Confirmation of standard error analysis techniques applied to EXAFS using simulations.
 In 14th International Conference on X-Ray Absorption Fine Structure, DiCicco, A.; Filipponi, A., Eds. lop
 Publishing Ltd: Bristol, 2009; Vol. 190.
- Bothe, J.V., Brown, P.W., The stabilities of calcium arsenates at 23 ± 1 °C. Journal of Hazardous Materials. 1999, B69, 197-207.
- I.T. Burke, C. Boothman, J.R. Lloyd, R.J.G. Mortimer, F.R. Livens, K. Morris, Effects of progressive anoxia on the solubility of technetium in sediments, Environ. Sci. Technol., 39 (2005) 4109-4116.
- Chaurand, P.; Rose, J.; Briois, V.; Salome, M.; Proux, O.; Nassif, V.; Olivi, L.; Susini, J.; Hazemann, J.-L.; Bottero, J.-Y., New methodological approach for the vanadium K-edge X-ray absorption near-edge structure interpretation: Application to the speciation of vanadium in oxide phases from steel slag. Journal of Physical Chemistry B 2007, 111, (19), 5101-5110.
- S.J. Gurman, N. Binsted, I. Ross, A Rapid, Exact Curved-Wave Theory for Exafs Calculations, Journal of Physics C-Solid State Physics, 17 (1984) 143-151.
- Mayes, W. M.; Jarvis, A. P.; Burke, I. T.; Walton, M.; Feigl, V.; Klebercz, O.; Gruiz, K., Dispersal and Attenuation of Trace Contaminants Downstream of the Ajka Bauxite Residue (Red Mud) Depository Failure, Hungary. *Environmental Science & Technology* **2011**, *45*, (12), 5147-5155.
- C. Peacock, Physiochemical controls on the crystal-chemistry of Ni in birnessite: Genetic implications for ferromanganese precipitates, Geochim. Cosmochim. Acta 73 (2009) 3568-3578.
- B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrot. Radiat., 12 (2005) 537-541.
- A. Tenderholt, B. Hedman, K.O. Hodgson, PySpline: A modern, cross-platform program for the processing of raw averaged XAS edge and EXAFS data, in: B. Hedman, P. Painetta (Eds.) X-Ray Absorption Fine Structure-XAFS13, 2007, pp. 105-107.
- S. Tomic, B.G. Searle, A. Wander, N.M. Harrison, A.J. Dent, J.F.W. Mosselmans, J.E. Inglesfield, CCLRC Technical Report DL-TR-2005-001, ISSN 1362-0207(2005), in, 2005.
- Stern, E. A., number of relevant independent points in x-ray-absorption fine-structure spectra. Physical Review B 1993, 48, (13), 9825-9827.