Efficient semi-implicit discretizations on terrain intersecting grids for high resolution atmospheric models

L.Bonaventura

Max-Planck-Institut für Meteorologie Max Planck Institute for Meteorology

Outline of discretization approach (*L.B., JCP 2000*)

- Semi-implicit, semi-lagrangian two time level discretization of the Euler equations
- Finite volume discretization of the divergence
- Horizontal C grid, vertical Charney Phillips
- Improved interpolation at the boundary for SL advection, RBF interpolators (joint work with G.Rosatti, University of Trento)

Computational grid

The solver

- Weakly nonlinear system Ax+f(x)=b: fixed point iteration with PCG as linear kernel
- Convergence of nonlinear iterations
- Linear part A: symmetric and well conditioned independently of orography
- Block tridiagonal preconditioning with linear operators of vertical discretization
- Fully MPI-parallel and portable code
- Next: domain decomposition preconditioners

Applications to open channel flow: straight channel

				7.35
	Water depth	U	V	7.36
L_inf error	3.2*10^-4	7.1*10^-4	7.2*1	0^4 .38
L_2	3.2*10^-8	1.6*10^-7	5.3*1	0^- <u>8</u> .4
				7.41
				-1.+2

Applications to open channel flow: curved channel

2D Gallus-Klemp lee wave test case

2D nonlinear, nonhydrostatic test

Comparison with terrain following semi-implicit LM

- Difficulty of a fair comparison (different stopping criteria and implementation details)
- Slower convergence of iterative solver for terrain following semi-implicit

	Residual 1%	Residual 0.19	Residual	
	of initial	of initial	0.01% of	
	value	value	initial value	
SI iterations	6	21	50	
SIZ iterations	8	17	21	

Parallel run with 36 processors (3D lee wave test)

	Total CPU time for 1 hour	CPU time solver	COMM time solver	Fastest /slowest ratio
SE	88.95 s	45.03 s	11.95 s	1.4 s
SI Z	56.40 s	26.16 s	5.12 s	1.03 s

Setup of fair tests for efficiency comparison

Parallel run with 16 processors (3D cold bubble test)

	Total CPU time for 1 hour	CPU time solver	COMM time solver	CPU time advection	COMM time advection	Fastest /slowest ratio
SE	328 s	91 s	13.4 s	156 s	40.8 s	1.07
SI Z	207 s	119 s	13.4 s	65.4 s	7.4 s	1.02

Development plans

- ARPA-SMR: development of a full SI-SL NWP model in the framework of the COSMO consortium adapting the LokalModell physics
- MPI: test tube for numerical methods to be used in ICON, the new global nonhydrostatic dynamical core