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1. INTRODUCTION

In the design of numerical models for simulating atmospheric flow there is ongoing
debate over which choice of predicted variables is best (for example, temperature T or
potential temperature § may be chosen as one of the thermodynamic variables) and over
which arrangement of the predicted variables in space is best (e.g. the Lorenz (1960) or
Charney-Phillips (1953) grids in the vertical). The two issues are inextricably linked; the
optimal grid will depend on the choice of variables, and vice-versa. We must therefore
seek the optimal overall configuration of variables and grid.

Possible criteria for deciding on the optimal configuration include conservation prop-
erties and coupling between the equations for the resolved dynamics and the parameter-
ized physics. In this report we concentrate on the ability of different candidate configu-
rations to simulate accurately the normal modes of the linearized governing equations,
particularly their dispersion properties. For example, some configurations can give wave
group velocities of the wrong sign for shorter-scale waves, or have grid-scale “compu-
tational modes” that do not propagate; these are considered especially damaging to
numerical solutions.

In this report we focus on the choice of thermodynamic variables, and on the choice
of vertical grid staggering. For different candidate configurations the normal mode
frequencies for the discrete linearized governing equations are computed and compared
with the analytic normal mode frequencies.

2. GOVERNING EQUATIONS

We consider the full compressible Euler equations in planar geometry and using
height 2 as the vertical coordinate. To begin with, the latitudinal variation of the Coriolis
parameter f = 2{sin ¢ is neglected (we will attempt to include it later), and the 2Q cos ¢
Coriolis terms associated with the horizontal component of the Earth’s rotation vector
are neglected. Moist effects and diabatic heating and friction are also neglected, and the
equations are linearized about a reference state (indicated by subscript s) at rest and in
hydrostatic balance. In standard notation the resulting equations are
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Only two of equations (2.4)-(2.7) are needed, since the evolution of the thermodynamic
variables that are not predicted is implied by the linearized ideal gas law

p/ps = T/Ts + p/ps (2.8)
and the linearized definition of potential temperature
0/8s = T/Ts — kp/ps. (2.9)

We may choose any two of the four thermodynamic variables 8, p, T, and p to be
our predicted variables, giving 6 possible pair choices to consider. This certainly does
not exhaust the possibilities. However, many of the plausible alternative choices are
equivalent, or virtually equivalent, under the linear normal mode analysis to the cases
being considered.

We seek solutions that satisfy the boundary conditions w = 0 at z = 0 and z = D.
Because all coefficients in (2.1)-(2.7) are independent of z, y and ¢, horizontally wavelike
solutions proportional to expi(kx + ly — ot) are possible. Assuming solutions of this
form, (2.1)-(2.2) become

—iou — fu+ iz'k:p =0, (2.10)
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On an f-plane there is no S-effect and therefore no Rossby restoring mechanism, so all
Rossby modes have zero frequency. Consequently, analysis of discrete normal modes on
an f-plane can give very little useful information about how well a given scheme will
represent Rossby modes. Nevertheless, Rossby modes are meteorologically important,
so it is desirable to be able to assess how well candidate configurations represent them.
However, if we simply replace the constant f in equations (2.1) and (2.2) by a linear
latitude variation f = fo + By then solutions proportional to expi(kz + ly — ot) are no
longer possible. We can attempt to include the f-effect by making an approximation
analogous to that made in deriving the quasigeostrophic S-plane equations. We begin
with (2.1) and (2.2) but regard f as a function of latitude, and take the horizontal
divergence and vertical component of the curl of these equations. From this point regard
f and S as constants, so solutions proportional to expi(kz + ly — ot) are possible. The



resulting divergence and vorticity equations can be rearranged to obtain equations for
u and v tendencies

1
—iou — fu+ %(z’lv —iku) + —sikp =0, (2.12)
—iov + f —ﬁ('k + il )+i'l =0 (2.13)
iov + fu — 25 (kv + dlu pszp— . .

These equations are similar to (2.10) and (2.11) except for the inclusion of the 8 terms.
An unfortunate by-product of the approximations made in deriving them is that the
resulting system of equations no longer conserves energy, leading to growing and decaying
normal modes, unless the meridional wavenumber | = 0. Nevertheless, provided we are
prepared to consider only zonally propagating modes, the resulting system of equations
leads to a realistic dispersion relation for acoustic, gravity, and Rossby modes. Moreover,
the B terms are brought into the equations through their interaction with the horizontal
velocity, as they would be in the unapproximated equations. Therefore, comparison of
discrete and analytic normal modes based on equations (2.12) and (2.13) (with [ = 0)
should provide an accurate assessment of different numerical schemes in the presence of
the p-effect, in particular their ability to represent Rossby modes.

3. ANALYTICAL SOLUTION

When the reference state is isothermal, implying that the reference static stability
N2 = g0, /05 and the reference sound speed squared ¢2 = RTs/(1—k) are both constant,
the dispersion relation may be found analytically. For external modes the dispersion
relation is a cubic equation for o; the three roots correspond to two acoustic modes and
a Rossby mode. For each internal mode the dispersion relation is a quintic equation for
o; the five roots correspond to two acoustic modes, two inertia-gravity modes, and a
Rossby mode. The dispersion relation can easily be solved numerically for ¢ when the
other parameters are known.

4. DISCRETE SOLUTION

As discussed already in Section 2, we consider 6 possible pair choices for the prognos-
tic variables. For each of these choices there are various ways of staggering the variables.
It is natural to store w at the boundaries in order to impose w = 0 there. Therefore, we
will consider cases in which the other variables are staggered or not staggered relative to
w. Moreover, it is clear from the governing equations that inaccuracies due to vertical
averaging will be introduced, with no advantage gained, if u and v are not stored at the
same levels. Therefore we will restrict attention to cases in which u and v are stored at
the same levels. Thus, for each pair choice of prognostic variables there are 8 choices of
vertical staggering, depending on whether (u,v) and the two thermodynamic variables
are or are not staggered relative to w. Thus there are 6 x 8 = 48 cases to consider in
total.



For each of these 48 cases (2.12), (2.13), (2.3), and the appropriate two equations
from (2.4) to (2.7) were discretized on a grid with N full-levels and constant spacing Az.
The results shown in Section 5 are for N = 20. Simple centred differences over Az or
2Az were used to approximate vertical derivatives, and a simple average of neighbouring
values was used to transfer values from half-levels to full-levels or vice-versa when needed.
The discretization results in a matrix eigenvalue problem which can be solved using a
standard package.

The following parameter values were used: D = 10000m, g = 9.80616ms2, f
1.031 x 107471, 8 = 1.619 x 10~ s 'm~! (corresponding to 45°N), k = 0.2856, T, =
250K, k =27 x 107 %m~!, and [ = 0.

5. RESsuLTS

Many of the 48 configurations considered produce unstable modes or severely dis-
torted numerical dispersion relations, making them unsuitable for practical use. Figure 1
compares the numerical and analytical dispersion relations for three of the more suitable
configurations. The left panels are for a Charney-Phillips grid using p and 6. Diamonds
indicate analytic frequencies, crosses indicate numerical frequencies. Thuburn et al.
(2002) have argued on the basis of the analytical normal mode structures that this con-
figuration should be optimal for capturing the normal modes. The present calculation
confirms that it is indeed the best of all those considered at capturing all the mode
frequencies. The centre panels are for a similar configuration but with p instead of p.
This is the configuration used in the Met Office “New Dynamics”. It is only slightly
worse than the best configuration at capturing the Rossby mode frequencies, and might
have better conservation properties. The right hand panels are for a Lorenz grid using
T and p. Very similar results are obtained for the other Lorenz grid configurations.
Lorenz grids are generally regarded as better than Charney-Phillips grids for capturing
conservation properties. Again, the mode frequencies are very well captured except for
the higher internal Rossby modes. However, what the figure does not show is that all
of the Lorenz grid configurations have a computational mode, consisting of a two-grid
oscillation in one or both of the thermodynamic variables, with zero frequency.
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